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A pluripotent state of embryonic stem cells (ESCs) and induced

pluripotent stem cells (iPSCs) is maintained through the

combinatorial activity of core transcriptional factors (TFs) such

as Oct4, Sox2, and Nanog in conjunction with many other

factors including epigenetic regulators. Proteins rarely act

alone, and knowledge of protein–protein interaction network

(interactome) provides an extraordinary resource about how

pluripotency TFs collaborate and crosstalk with epigenetic

regulators in ESCs. Recent advances in affinity purification

coupled with mass spectrometry (AP-MS) allow for efficient,

high-throughput identification of hundreds of interacting

protein partners, which can be used to map the pluripotency

landscape. Here we review recent publications employing AP-

MS to investigate protein interaction networks in ESCs, discuss

how protein–protein connections reveal novel pluripotency

regulatory circuits and new factors for efficient reprogramming

of somatic cells.
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Introduction
Pluripotency, the capacity to differentiate into all cell

types, is a defining property of embryonic stem cells

(ESCs). The undifferentiated state of ESCs is maintained

by a set of pluripotency factors [1]. Forced expression of

these factors (i.e. the Yamanaka factors [2] Oct4, Sox2,

Klf4, and c-Myc, OSKM) can reprogram lineage-com-

mitted cells back to an ESC-like state (called induced

pluripotent stem cells, iPSCs), providing extraordinary
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potential for regenerative medicine [3,4]. Transcriptional

cooperation and their regulatory networks among the

pluripotency factors such as Oct4, Sox2, and Nanog have

been extensively studied in ESCs [5,6]. Given that the

proteins rarely act alone, the physical protein–protein

interaction (PPI) networks of pluripotency factors should

provide valuable information about how the pluripotent

state is established and maintained. Here we review the

recent advances in pluripotency interactome studies on

understanding the intricate protein interaction networks

and protein complexes surrounding several critical plur-

ipotency factors. Three aspects are discussed in detail:

the technology behind protein mass spectrometry to

investigate PPIs, the emerging insights on the extended

ESC protein interactome, and how the pluripotency

interactome reveals novel factors for efficient somatic

cell reprogramming.

Methods to study protein–protein interactions
A number of methods have been developed to examine

the binary PPIs in ESCs (reviewed in Ref. [7]). Among

those approaches, affinity purification coupled with mass

spectrometry (AP-MS) has become the method of choice

[8]. The conceptual view of an interactome study using

AP-MS is described in Figure 1. Five years ago, label-free

approaches were used to compare the abundance of

purified proteins by counting the number of detected

peptides. Recently, due to the advent of high-accuracy

MS, stable isotope labeling approaches (such as stable

isotope labeling by amino acids in cell culture, SILAC)

are being employed, yielding increasing robustness and

information content of quantitative proteomics data [8].

Biological replicates with forward and reverse (swapped

labeling) SILAC experiments are usually needed to

further enhance confidence of protein interactions [9].

Conventional protein co-immunoprecipitation assays are

also necessary to validate the interacting candidates.

Pluripotency protein interactome in ESCs
The published pluripotency interactome centered on

TFs and epigenetic regulators in ESCs is summarized

in Table 1. In 2006, the first comprehensive interactome

was conducted on a number of pluripotency proteins with

a particular focus on Nanog in mouse ESCs [10��]. Unlike

the other pluripotency factors such as Oct4 and Sox2,

which are uniform in all undifferentiated ESCs, Nanog

expression is relatively heterogeneous [11]. Depletion of

Nanog immediately decreases self-renewal efficiency of

ESCs and leads to cellular differentiation [12]. With a

high-affinity biotin/streptavidin (Bio/SA) purification
www.sciencedirect.com
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Figure 1

Pluripotency interactome
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Strategy of interactome study using affinity purification coupled with mass spectrometry (AP-MS). A bait protein (indicated as the red circle) in

pluripotency interactome with an epitope (either endogenous or a tag-conjugated protein) can be specifically recognized and purified in AP. Salt

concentration during purification is important. High salt concentration will remove relatively weak protein–protein interactions or protein-mediated

indirect interactions. Endonuclease such as benzonase is used to destroy the DNA/RNA-mediated protein–protein interactions. The abundance of

purified protein is determined by MS in two strategies. In label-free method, protein abundance is quantified by counting the number of detected
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Table 1

Summary of the published interactome studies in ESCs

Study Bait proteins Cell resource Affinity purification

(AP) methods

Important interactors and

its function

Wang et al. [10��] Nanog, Dax1, Nac1,

Zfp281, Oct4, Rex1

Mouse ESCs Biotin/streptavidin

(Bio/SA)-AP

Survey study

van den Berg

et al. [16]

Oct4 Mouse ESCs Flag-AP Esrrb; positively regulate

Nanog expression

Liang et al. [15] Nanog Mouse ESCs Endogenous antibody-AP NODE complex; represses

ESC differentiation

Ho et al. [24�] Brg1 Mouse ESCs Endogenous antibody-AP esBAF complex; a ES-sepcific BAF

complex essential for self-renewal

Shen et al. [64�] Ezh1, Ezh2, Eed Mouse ESCs Double-step Flag- and

Bio/SA-AP

Jmj (Jarid2); interacts with PRC2

complex and fine-tunes H3K27me3

Pasini et al. [65] Suz12, Jarid2 AP-MS in Hela and

293T cells, validated

in ESCs

Flag-AP (Suz12), double-step

Flag- and HA-AP (Jarid2)

Jarid2; interacts with PRC2 complex

and maintains H3K27me3

Kim et al. [22��] Myc, Max, Dmap1,

Tip60, Gcn4, E2F4

Mouse ESCs Bio/SA-AP Survey study; defines three independent

(core, PRC, and Myc) modules in ESCs

van den Berg

et al. [18��]

Oct4, Sall4, Dax1,

Tcfcp2l1, Esrrb

Mouse ESCs Flag-AP Survey study

Pardo et al. [19] Oct4 Mouse ESCs Flag-AP Survey study

Mallanna et al. [66] Sox2 Early differentiating

mouse ESCs

Flag-AP Sox21; triggers differentiation

McDonel et al. [42] Sin3a Mouse ESCs Flag-AP Survey study

Ding et al. [20��] Oct4 Mouse ESCs Bio/SA-AP Survey study

Fidalgo et al. [38�] Zfp281 Mouse ESCs Endogenous antibody-AP NuRD complex; mediates Nanog

autorepression

Gao et al. [67] Sox2 Mouse ESCs Flag-AP Survey study; Smarcd1, represses

ESCs differentiation

Lai et al. [68] Sox2 Mouse ESCs Flag-AP Parp1; negatively regulates Sox2 in

response to FGF signaling

Costa et al. [13��] Nanog Mouse ESCs Single-step Flag-AP, Bio/SA-AP,

or Endogenous antibody-AP

Tet1; facilitates reprogramming

Gagliardi et al. [14�] Nanog Mouse ESCs Flag-AP Survey study; domain-mapping

of Nanog/Sox2 interaction

Chen et al. [41] Tet2, Tet3 AP-MS in 293T cells,

validated in ESCs

SA-binding peptide/SA-AP Ogt; mediates histone 2B Ser112

GlcNAcylation

Shi et al. [40] Tet1 Mouse ESCs Endogenous antibody-AP Ogt; modifies Tet1 by GlcNAC and

positively regulates Tet1 expression

Vella et al. [43�] Ogt Mouse ESCs Double-step Flag- and

Bio/SA-AP

Tet1; recruits Ogt to chromatin

Yakulov et al. [69] b-Catenin Mouse ESCs Endogenous antibody-AP Lsd1; is recruited by b-catenin to

repress Lefty1
combined with a high-salt eluting method, Wang et al.
identified 17 Nanog interactors with high confidence.

The interaction network was expanded for the identified

Nanog interactors such as Dax1 (Nr0b1), Nac1, Zfp281,

Oct4, and Rex1 with the same AP-MS strategy [10��].
The Nanog interactome was further extended in later

studies by using biotin-, Flag tag-, and endogenous

Nanog antibody-based affinity approaches [13��,14�,15].

With an improved tagging method and less stringent

purification, Gagliardi et al. [14�] identified 130 Nanog
(Figure 1 Legend Continued) peptides. In stable isotope labeling method (sh

prevent potential heavy to light exchange of specific transiently interacting pa

the profiles of co-eluting light and heavy peptides, representing the relative am

replicate is recommended with label swapping (reverse experiment). Specifi

ratio in forward and a positive log (H/L) ratio in reverse experiments, whereas 

experiments. Finally, a protein–protein interaction network is constructed fro

program such as Cytoscape.
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interactors and dramatically expanded our knowledge of

the Nanog interactome in ESCs. Many of the proteins

identified are components of protein complexes involved

in different machineries, especially in epigenetic regula-

tion and chromatin remodeling. Interestingly, protein

complexes with opposing functions are observed to inter-

act with Nanog, such as histone acetyltransferase com-

plexes (Tip60–p400, also called NuA4–HAT) and

deacetylase complexes (NuRD, N-CoR, Sin3a); the

histone 3 lysine 4 methyltransferase (MLL) complex
own in the figure), the lysates are combined together after AP in order to

rtners during the purification. Then protein abundance is quantified from

ount of proteins from the bait- and control-AP, respectively. A biological

c interactors by definition show a negative log heavy-versus-light (H/L)

unspecific or background binders show a log (H/L) ratio close to 0 in both

m the interactors surrounding the bait protein using a visualization
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and the LSD1 demethylase complex. All these data

suggest a Nanog-dependent epigenetic regulation of dis-

tinct activated and repressed loci in pluripotent cells.

Oct4 is another key pluripotency factor in the transcrip-

tional regulatory network in ESCs. Orphan nuclear

receptor estrogen-related beta (Esrrb or Err2) was

initially identified as an Oct4 partner [16]. Esrrb can

recruit the Oct4/Sox2 heterodimer to the Nanog prox-

imal promoter, and positively regulates Nanog expres-

sion. Together with other reports demonstrating that

Nanog interacts with Esrrb and regulates its transcrip-

tion [10��,17], a feedback regulatory loop has been

suggested wherein Oct4/Esrrb modulates Nanog

expression and ESC pluripotency. An interactome cen-

tered by Oct4 was recently reported in three indepen-

dent studies (van der Berg et al. [18��], Pardo et al. [19],

and Ding et al. [20��]). Because the levels of Oct4 are

critical in controlling the undifferentiated  state, ectopic

expression of tagged Oct4 may affect the self-renewal

capacity of ESCs [21]. Both Ding’s and van den Berg’s

studies used ZHBTc4 mESCs, in which both Oct4
alleles have been replaced and Oct4 expression is

directed from a doxycycline-suppressible transgene

[21], followed by re-introduction of either biotin-tagged

[20��] or Flag-tagged [18��] Oct4 in ZHBTc4 cells.

There are 18 proteins identified consistently in three

Oct4 interactomes, increasing the overall biological

significance of those proteins. They are either involved

in the NuRD (Chd4, Gatad2a, Gatad2b, Mta2, Mta3,

Mbd3, Hdac1), SWI/SNF (also called BAF complex,

Brg1, Baf155), or LSD1 (Lsd1, Rcor2) complexes, or

they are individual TFs (Sall1, Sall4, Hcfc1, Hells, etc.)
playing important roles in ESCs. Interestingly, there is

a high degree of consistency and numerous common

transcriptional and epigenetic regulators revealed in

both Oct4 and Nanog interactomes, which raises an

important issue on how ubiquitous chromatin modifiers

interact with pluripotency TFs to modulate an

ESC-specific gene expression profile to maintain

pluripotency.

In addition to the core pluripotency interactome pivoted

by Oct4 and Nanog, Kim et al. identified a distinct PPI

network associated with c-Myc [22��]. A notable finding

from the Myc interactome is the interaction with the

Tip60–p400 complex. An RNA interference (RNAi)

screen revealed that Tip60–p400 is essential to maintain

the pluripotent state, whereas inhibition of the com-

ponents in the Tip60–p400 complex leads to differen-

tiation [23]. Interestingly, the gene expression profiles

upon Tip60 and p400 knockdown (KD) highly overlap

with that of Nanog KD and are enriched for develop-

mental regulators [23]. Together with the evidence that

the Tip60–p400 complex is a Nanog [14�] but probably

not an Oct4 interactor (the Tip60–p400 complex was

identified only in one of the three Oct4 interactome
www.sciencedirect.com 
studies, and was not validated by co-immunoprecipitation

[18��]), a unique Nanog function of epigenetic regulation

that differs from Oct4 is suggested.

ESC-specific protein complexes identified by
AP-MS
Several structurally specialized protein complexes in

ESCs were explored because AP-MS is able to identify

individual protein components. A striking finding is the

identification of the ESC-specific BAF complex (esBAF)

[24�], which has been shown to be critical for self-renewal

and maintenance of the ESC state. Using a stringent AP

condition, it was demonstrated that esBAF contains Brg1,

BAF155, BAF60A, but not other known BAF components

such as Brm, BAF170, and BAF60C. The esBAF complex

was shown to functionally interact with Oct4 and Sox2

and repress developmental genes by co-localizing genes

with Oct4/Sox2 at the genomic loci, thus refining the

core pluripotency circuitry [24�,25]. BAF155 is also a

component of the first Nanog interactome in mouse

ESCs [10��].

Another important ESC-specific protein complex is the

Nanog/Oct4-associated deacetylase (NODE) complex

identified by Nanog- and Oct4 AP-MS studies [15].

NODE lacks Chd4 and Mbd3, which are considered to

be essential subunits of the canonical NuRD complex.

However, both Chd4 and Mbd3 were later identified in

the Oct4 interactome [18��,19,20��] as well as in the

Nanog interactome ([14�] and our unpublished data).

Discrepancy of observations may be due to the fact that

the NODE complex was purified by an endogenous

antibody with low affinity and specificity, while the

following studies used tagged Oct4 or Nanog for high

affinity purification. Importantly, histone deacetylase

activity is preserved in Mbd3�/� ESCs. KD of Mta1, a

common subunit of NuRD and NODE complexes,

resulted in upregulation of differentiation genes, which

is distinct from that of Mbd3 KD [15]. Although it is

suggested that both complexes are functionally important

in ESCs, whether NODE is simply an experimental

artifact, and if not, how the NODE and NuRD complexes

assemble and distinctly interact with Nanog and Oct4,

remains to be determined.

In addition, a nucleotide excision repair (NER) complex

containing XPC, RAD23B, and CETN2 was uncovered

as an Oct4/Sox2-dependent stem cell coactivator (SCC)

complex, which is necessary for transcriptional activation

of Nanog in vitro [26]. The SCC/XPC complex was

isolated from a high-salt fraction of a multi-step chroma-

tography purification procedure and identified by MS. It

is worth noting that although interaction of Oct4 and SCC

was validated in 293T cells by overexpression, a stable

interaction in ESCs with endogenous levels of those

proteins was unable to be reproduced [26]. Consistently,

none of the subunits in the SCC complex was identified in
Current Opinion in Genetics & Development 2014, 28:16–24
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the interactome studies of Oct4, suggesting that func-

tional coactivator-activator interactions can often be weak

and transient [27].

Pluripotency PPI network guides efficient
somatic cell reprogramming (SCR)
Since the initial discovery of iPSCs induced by forced

expression of ‘Yamanaka factors’ Oct4, Sox2, Klf4, and c-

Myc [2], the dynamics and molecular mechanisms of SCR

have been extensively elucidated [28,29]. It is believed

that forced expression of these genes perturbs various

epigenetic processes leading to activation of the core

pluripotency genes in reprogramming cells. Therefore,

pluripotency interactome studies could strongly implicate

how the ESC-like state is established and uncover many

‘necessities’, ‘drivers’, and ‘enhancers’ of cellular repro-

gramming. For instance, the SCC/XPC complex is a

requisite for reprogramming, as SCR efficiency is highly

compromised in MEFs derived from XPC and RAD23B

knockout mice [26]. Esrrb, an Oct4/Nanog interactor, was

demonstrated as a driver of SCR capable of replacing Klf4

and c-Myc in the OSKM cocktail of reprogramming [30].

Moreover, combined overexpression of the Oct4/Nanog

interactor esBAF components Brg1 and BAF155 has been

reported to enhance OSK-induced reprogramming of

fibroblasts [31]. Mechanistically, it was shown that Brg1

physically interacts with a conserved linker region be-

tween the POU-specific domain and the POU home-

odomain of Oct4. A point mutation at this linker region

abolishes Oct4 activity during reprogramming, suggesting

an important role of Oct4 in recruiting key epigenetic

regulators to the genomic sites occupied by Oct4 [32�].

The Mbd3/NuRD complex also associates with Oct4 and

Nanog, as well as other important pluripotency factors such

as Nac1, Sall4, and Zfp281 [10��]. NuRD is required to

modulate ESC heterogeneity by repressing the pluripo-

tency genes; therefore it is considered a barrier of SCR

[33,34]. Depletion of Mbd3 significantly enhances the

reprogramming efficiency to a deterministic extend [35].

In stark contrast, a recent study by dos Santos et al. [36]

revealed an opposite functional contribution of NuRD

complex to the reprogramming process. Depletion of

Mbd3 abrogates epiblast stem cell (EpiSC) and pre-iPSC

reprogramming but has a minimal effect on MEF repro-

gramming. Ectopic Mbd3 together with Nanog expression

synergistically promotes EpiSC/pre-iPSC reprogramming

[36]. The positive function of NuRD in reprogramming

also finds its support from another study showing that the

NuRD complex is recruited by Sox2 to repress mTOR

expression and induce autophagy in promoting reprogram-

ming [37]. It is currently unclear what the underlying cause

for such discrepancies is, and thus future studies are

needed to clarify the function of Mbd3/NuRD complex

in the context of reprogramming. Interestingly, the Nanog-

associated protein Zfp281 was shown to recruit the NuRD

complex to the Nanog locus to restrict its expression in
Current Opinion in Genetics & Development 2014, 28:16–24 
maintaining optimal self-renewal of ESCs and during late

stages of the pre-iPSC to iPSC transition. KD of Zfp281

enhances the efficiency in this pre-iPSC reprogramming

model by upregulating Nanog expression [38�].

In an extended Nanog interactome study, association of

Nanog and the ten-eleven translocation (TET) family of

dixoygenase proteins uncovered a critical role of Nanog

in recruiting Tet1 to the core pluripotency network

[13��]. Tet1-mediated demethylation is linked to the

activation of pluripotency loci in the late phase of

reprogramming, in accordance with the reorganization

of the DNA methylation landscape at this stage [29].

Recently, a set of interactome studies on TET family

proteins (Tet1/2/3) revealed a number of important

interactors related to TET functions, such as the

Sin3a-Hdac complex and O-GlcNAc transferase (Ogt)

[39–41]. These interactions were also confirmed in the

Sin3a interactome [42] and the Ogt interactome [43],

respectively. Although discrepancy of observations was

reported, it is believed that all TET family members

interact with Ogt [39,44]. Ogt was shown to positively

regulate SCR, while KD of Ogt decreases efficiency of

OSK-driven MEF reprogramming [45]. Furthermore,

Ogt interacts with and O-GlcNAcylates Oct4 and

Sox2 post-transcriptionally.  Modification of O-GlcNAc

at T228 of Oct4 is functionally critical, as a point

mutation at this site abolishes the effects of Oct4 in

MEF reprogramming [45,46].

Perspectives
PPI is context sensitive and detection of interacting

partners heavily dependents on the experimental pro-

cedures (i.e. sample treatment, salt concentration in AP)

and the intrinsic abundance of interactors. Proteins can

directly contact, or indirectly associate with each other

through DNA or RNA. For instance, the Sox2–Oct4

interaction is DNA-dependent and must be stabilized

by UV cross-linking [47,48]. Furthermore, it was reported

that the long intergenic noncoding RNAs (lincRNAs)

play an important role in recruiting histone modifying

complexes to genomic loci and mediating protein inter-

action [49,50]. Therefore, pretreating samples with ben-

zonase is recommended only if the protein–protein

interaction is investigated. Since an AP-MS experiment

may not be able to discover all interactors of the bait

protein, alternative methods can be used to complement

the PPI network, such as high throughput yeast two-

hybrid assays, domain–domain interactions, and protein

microarray [51].

Given that most pluripotency factors are TFs, one urgent

task for interactome studies is to ascertain transcriptional

control in ESCs [52]. Together with the technique of

chromatin immunoprecipitation followed by deep se-

quencing (ChIP-Seq), interactomes interrogate how plur-

ipotency TFs recruit co-activators/repressors and change
www.sciencedirect.com
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the local epigenetic pattern and chromatin structure [53].

Genome-wide co-localizations of many interacting part-

ners have been reported in ESCs, such as Nanog and its

interactors Nac1, Dax1, and Zfp281 [53], Oct4 and Wdr5

[54], Tet1 and Sin3a [55], Tet1/2 and Ogt [39,41,43�], and

Hdac1/2 and NuRD [56]. Interestingly, ChIP-Seq also

tells how a shared subunit functions in different protein

complexes. For instance, Hdac1/2 are the subunits in both

NuRD and Sin3a complexes. In mouse ESCs, Hdac1/2

showed a higher level of genomic co-localization with the

NuRD than with the Sin3a complex (our unpublished

data). NuRD represses the pluripotency TFs, while Sin3a

was shown to positively regulate Sox2 and Nanog expres-

sion [57]. Therefore the Hdac activity mainly associated

with the NuRD complex, a reprogramming barrier, is in

line with the evidence that treatment of Hdac inhibitors

accelerates SCR [58].
Figure 2
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By now, most of the interactome studies on the pluripo-

tency network are in mouse ESCs. Although the mouse is

the most important organism for generating hypotheses in

the field of stem cell biology, differences across species

exist. Human ESCs are more similar to mouse EpiSCs in a

primed state of pluripotency [59]. Obstacles in studying

the human interactome include the high cost of main-

taining human ESCs, lacking high affinity endogenous

protein antibodies, and difficulty in genomic engineering

of human cells. The advance of zinc-finger nuclease

(ZFN) [60] and transcription activator-like effector nucle-

ase (TALEN) [61] techniques comprise a powerful tool to

manipulate human genes. Recently, the clustered regu-

larly interspaced short palindromic repeats (CRISPR)/

Cas9 system has shown great promise and flexibility for

genetic engineering by multiplexed disruption and tar-

geted integration of human genes [62,63]. High affinity
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d view from multiple published interactome studies in mouse ESCs.

 solid lines, indicating physical associations with each other. The core

r filled shapes indicate the proteins that facilitate or replace one of the

apes indicate the barrier proteins of reprogramming. The proteins and

 such as pluripotency transcription factors, histone acetylation, histone

genetic regulation complexes.

Current Opinion in Genetics & Development 2014, 28:16–24



22 Cell reprogramming, regeneration and repair
pull-down is feasible by fusing epitope tags to the plur-

ipotency factors at their endogenous loci.

As the functional players, protein expression and their

interaction network delineate how they act individually

and together in the processes of self-renewal and main-

tenance of pluripotency (Figure 2). Pluripotency protein

interactome also provides a framework for exploring the

new factors that may permit faithful reprogramming of

somatic cells. Technically, further developments of inter-

actome studies will continue to focus on increasing the

sensitivity of AP-MS and reducing the required amount of

proteins from a rare population of cells. A better un-

derstanding of the pluripotency machinery in ESCs

awaits efforts on both systematic discovery of new

interactors and sophisticated functional studies for those

candidates.
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