
Chapter 6

Deciphering Protein Complexes and Protein

Interaction Networks for Stem Cell Pluripotency
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Abstract Embryonic stem cells (ESCs) hold great promise in regenerative

medicine owing to their unique property of unlimited self-renewal while retaining

multilineage differentiation capacities. Stem cell biology has been advanced by

high throughput genomics and proteomics approaches toward identifying a fuller

repertoire of genetic and epigenetic regulatory factors and understanding how

they function individually and/or combinatorially in regulating self-renewal and

maintaining pluripotency. Proteins function as members of protein complexes and

form a myriad of protein-protein interactions in governing proper transcriptional

output and cellular identity. Construction of protein-protein interaction networks

together with other large datasets such as expression profiles and target gene occu-

pancy is essential in facilitating a comprehensive understanding of the mechanisms

of ESC self-renewal and pluripotency. This chapter will summarize current efforts

and ongoing progresses in dissecting the protein complexes and mapping the protein

interaction networks associated with the major pluripotency factors Nanog, Oct4

and Sox2, and provide guidance for refining the current methodologies and develop-

ing new tools for high throughput data generation to further our understanding of

stem cell pluripotency.
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6.1 Introduction

Embryonic stem cells (ESCs), derived from pre-implantation blastocyst stage

embryos, are endowed with unlimited self-renewal capacity while maintaining

multilineage differentiation potential, a property often referred to as pluripotency.

The self-renewal and pluripotency characteristics of ESCs make these cells uni-

quely attractive for cell-based therapies as they will provide unlimited material

supply for nearly all types of cells through differentiation, and thus offering great

hope in regenerative medicine.

Several transcription factors, notably the homeobox proteins Oct4 [62] and

Nanog [13, 58], as well as the HMG box containing Sox2 [3], play fundamental

roles in early development and stem cell pluripotency. These key factors act in

combination to sustain pluripotency by activating ESC critical factors (including

themselves) and repressing differentiation-promoting genes. ESCs are sensitive to

the dosage of Nanog [34], Oct4 [64] and Sox2 [8, 43]: enforced expression of

Nanog relieves ESCs from the LIF requirement for stem cell maintenance [13],

promotes transfer of pluripotency after cell fusion [76], and ensures direct repro-

gramming of somatic cells to the so-called induced pluripotent stem cells (iPSCs)

[77]. In contrast, overexpression of Oct4 drives primitive endoderm differentiation

[64], possibly due to direct repression of the Nanog promoter by excessive Oct4

[66]. In addition, a small increase of Sox2 triggers the differentiation of mouse

ESCs toward mesoderm and ectoderm lineages [43], presumably through perturba-

tion of Oct4 expression [57]. Dosage sensitivity suggests that the ESC state reflects

a balance of multiple transcriptional inputs that are likely exerted through associa-

tion and dissociation of multiprotein complexes. In specifying lineages, Oct4 and

Cdx2 counteract each other’s functions to shift the balance between trophectoderm

and inner cell mass (ICM) fates [65], and Nanog and Gata6 antagonize each other to

define epiblast and primitive endoderm lineages [15]. The ESC state, therefore, is

likely to be maintained by the continuous and direct interplay of multiple nuclear

factors, acting in cooperative and antagonistic modes.

Recent efforts employing high throughput and genomewide approaches such

as microarray [37, 73], chromatin immunoprecipitation [9, 16, 41, 50] and RNAi

studies [18, 21, 26, 35] have led to identification of an array of self-renewal regulators

and pluripotency factors in ESCs. These studies have enhanced our understanding

of how stem cells maintain the unique state of pluripotency and how stem cell-like

characteristics can be imposed on somatic cells via fusion-based or factor-based

reprogramming processes (see review [38]). In a post-genomic era, however, it

becomes obvious that the pluripotency machinery of a stem cell is far more compli-

cated than simply the collection of specific transcripts, proteins and target loci of

known pluripotency factors. Through protein complex formation, translational and

post-translational modifications, and degradation, the functional output of these

systems is difficult to predict based solely upon gene/protein expression and/or

genomic occupancy. It is clear that consideration of the transcriptome alone offers

an incomplete and biased interpretation of the underlying cell biology [33, 52].
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In addition, it has been demonstrated that many target loci bound by certain factors

in chromatin immunoprecipitations may not have direct biological significance

[6, 78, 103]. Vital cellular functions require the coordinated action of a large number

of proteins that assemble into an array of multi-protein complexes of distinct compo-

sition and structure to regulate the transcription of target genes [16, 41]. A key towards

understanding the molecular basis of self-renewal and pluripotency of ESCs lies in

mapping the intricate protein interaction networks encompassing many pluripotency

factors. Current efforts in identifying the protein constituents of stem cell protein

complexes and characterizing the pluripotency interaction networks (interactomes)

surrounding several critical pluripotency factors have uncovered new factors in self-

renewal signaling pathways and provided a wealth of valuable information on stem

cell pluripotency [7, 67, 88, 91]. For this book chapter, I will review the current status

and ongoing efforts in deciphering the pluripotency protein complexes and construc-

tion of protein interaction networks in ESCs.

6.2 Overview of the Approaches for Affinity Purification

of Protein Complexes in ESCs

Mammalian protein complexes have been studied by combining protein affinity

purification (AP) with mass spectrometry (MS) and bioinformatics. AP makes use

of specific binding interactions between molecules and generally involves three

basic steps: (1) incubation and binding reaction; (2) washing to remove nonspecific

binding; (3) dissociation and recovery of the bound material. Various AP methods

have been developed with modifications to one or few of these three steps to optimize

purification of the protein of interest [4, 19].

AP strategies can be broadly classified into twomain approaches according to the

nature of the target molecule (Fig. 6.1): if the target molecule is the native endoge-

nous protein, then the antibody-based affinity purification is applied; if however,

the target molecule is tagged with an epitope such as FLAG [23], which can be

introduced into cells either by a knockin strategy or as an ectopic overexpression

vector, then affinity purification will be based on the affinity tag. Two (or more)

different affinity tags [47] can be used for tandem (sequential) affinity purification,

which can increase specificity and reduce the background [72, 97].

There are several advantages associated with the AP-MS method: first, AP-MS

can be performed under physiological conditions, in the native organism or cell

type; second, it does not typically perturb relevant post-translational modifications

(PTMs), which are often crucial for the organization and/or activity of complexes

and can also be identified by MS; third, it can be used to probe dynamic changes in

the composition of protein complexes when used in combination with quantitative

proteomics techniques such as isobaric tag for relative and absolute quantit-
ation (iTRAQ) [104] and stable isotope labeling with amino acids in cell culture
(SILAC)[31] (see more in Sect. 6.4.3 and Chap. 5 in this volume).
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6.2.1 Antibody-Based Affinity Purification of Endogenous
Protein Complexes

Antibody pull down, also known as immunoprecipitation, is a technique used to

isolate a particular protein (and its associated proteins) from solution by means of

precipitation. The protein precipitate is formed by coupling the solution with an

antibody that specifically binds to the target protein. By isolating a known protein

from a complex, other proteins that closely interact with the desired protein may

also be pulled out of the complex. Therefore, antibody pull down reveals potential

endogenous protein-protein associations. The proteins in a complex may be further

separated by SDS polyacrylamide gel electrophoresis (SDS-PAGE) to allow for

easy antibody detection of certain known candidate proteins by Western blotting

or direct identification of unknown candidate proteins by MS.

The advantages of antibody-based affinity purification are: (1) no transgenic lines

need to be established, so the experiment can be done in a speedy manner; and (2) the

endogenous protein complexes can be purified, which signifies the biological

and functional relevance of the identified interacting proteins. The disadvantages

associated with this approach are: (1) most antibodies suffer from non-specific reactiv-

ity such that spurious protein complexes will co-purify with the bona fide protein

complexes; and (2) the affinity between antibody and the target protein is low, and

some interactions may be weak and lost during purification procedure. Such a method

has been applied to purify endogenous protein complexes of Nanog andOct4 in mouse

ESCs, which yielded a small number of Nanog [48] and Oct4 associated protein

Fig. 6.1 Summary of the strategies for affinity purification of protein complexes in ESCs
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complexes [48, 67, 88] and provided limited and yet still valuable information on

Nanog and Oct4 function in stem cell pluripotency (see details in Sect. 6.3.3).

6.2.2 Epitope Tagging for Affinity Purification of Protein
Complexes in ESCs

Among many epitope tags (see review [94]) that are used for AP studies, the

FLAG peptides DYKDDDDK and MDYKDDDDK are the most widely used

affinity tags for both immunodetection and AP. The FLAG tag can be multiplied

(e.g., 3�FLAG) to increase affinity and specificity and can be placed at either the

amino-terminus or carboxyl-terminus and in association with other tags for tandem

affinity purification. The FLAG tagged protein and its associated protein complexes

can be isolated with anti-FLAG antibody (either in a free form or cross linked with

gel matrices such as Protein G-Dynal beads) and eluted with FLAG peptides by

competition. The 3�FLAG tagging strategy has been employed by the two recent

studies to construct an expanded Oct4 interaction network in mouse ESCs [67, 88]

(see Sect. 6.3.2). The main advantage of using the epitope tagging for AP is that it

makes AP possible for almost all the proteins of interest, particularly for those that

antibodies are not available. This makes high throughput analysis of multiple

protein complexes possible. In addition, a relatively higher affinity and specificity

of the epitope than that of the endogenous antibody also makes it a favorable choice

for AP. However, such advantages of affinity and specificity seem to be dependent

on cellular context. Even though the FLAG-based AP has been successfully applied

in HeLa [12] and HEK293 [1] cells, its application in ESCs still suffers from high

background or non-specific binding, presumably due to the presence of proteins

in ESC extracts that are reactive nonspecifically to the FLAG and/or relatively low

affinity of the epitope tag and the FLAG antibody. This is manifested by the

presence of multiple nonspecific species in Western blotting of ESC lysates or

nuclear extracts (our unpublished observation) and presence of Oct4 peptides in

control samples of the published Oct4 affinity purification study [88]. Therefore, a

refined AP strategy employing FLAG in tandem with a second tag is more often a

preferred method. Alternatively, a new metabolic biotin tagging strategy has been

developed to complement and improve the AP studies in ESCs [40] (see below).

6.2.3 Metabolic Biotin Tagging for Affinity Purification
of Protein Complexes

In dissecting the pluripotent state, we have employed in vivo biotinylation of critical
transcription factors including Nanog and Oct4 in mouse ESCs for affinity purifi-

cation of protein complexes [89] and ChIP-on-chip [40] for target identification.

From these data we have constructed protein-protein [91] and protein-DNA [41]
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regulatory networks controlling stem cell pluripotency. In vivo biotinylation is

based on a short ‘biotinylation peptide’ [75] fused to a protein of interest that serves

as an in vivo substrate mimic for E. coli biotin holoenzyme synthetase (BirA),

an enzyme that performs highly selective biotinylation of the fusion protein.

In mammalian cells, plasmid expression vectors carrying the biotin-tagged tran-

scription factor (bioTF or FLBioTF with a Flag-biotin dual tag) and BirA (Fig. 6.2a)

can be used to obtain high-level production of soluble bioTF and BirA proteins, and

under appropriate culture conditions, the bioTF protein produced by this system is

completely biotinylated. Studies have documented that biotinylation of a tagged TF

does not significantly alter protein interactions, DNA-binding properties in vivo, or
subnuclear distribution [20]. Therefore, it offers a unique methodology to study

protein-protein and protein-DNA interactions simultaneously (Fig. 6.2b).

Biotinylation offers a number of advantages over traditional immunoaffinity

approaches for protein complex purification. First, the high affinity of biotin for

streptavidin (SA) (10�15 M kd) allows efficient purification of the biotinylated

protein and associated proteins; second, for ChIP applications, the high affinity allows

Fig. 6.2 In vivo biotinylation-based strategies for mapping protein-protein interactions in

ESCs. (a) Modification of a transcription factor (TF) with tandem tags (FLAG and Biotinylation

Peptide). E.Coli BirA biotin ligase catalyzes the addition of biotin to the lysine residue in the

biotinylation peptide. (b) Affinity methods to capture protein partners (bioSAIP-MS) associated

with the biotinylated TF. The ESCs expressing BirA alone will be processed simultaneously as

control (not shown). Triangles and diamonds denote nonspecific binding proteins; other shapes
denote specific binding proteins
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high stringency washing conditions, which reduces background binding that may

occur with other affinity tags; third, naturally biotinylated proteins are rare and well-

defined [7, 20, 91], and the chance for cross-reaction is quite low; fourth, the approach

obviates the need to generate protein-specific antibodies, which often cross-react with

other cellular proteins; finally, it is critical that the tagged proteins maintain their

functional and structural integrity when expressed. This makes the biotin tag more

appealing than other bigger tags (e.g., 3�FLAG) such that structural hindrance from

such a small peptide tag is minimal. On the other hand, additional time is required to

establish cell lines for in vivo biotinylation when compared to direct antibody-based

immunoprecipitation, and like epitope tagging, cell lines expressing a controlled level

of biotinylated proteins are necessary for analysis [91] since ectopic expression of a

protein drastically beyond endogenous levels can result in spurious protein complexes

and increases in nonspecific DNA binding. Nevertheless, these concerns are largely

outweighed by the superior specificity and highest affinity of the biotin-streptavidin

binding which enabled successful construction of “the Nanog interactome” [91]

(Fig. 6.3) and an extended transcriptional regulatory network [41] in mouse ESCs.

Fig. 6.3 The Nanog interactome for pluripotency of mouse ESCs. Four defining features of the

Nanog interactome (labeled a–d) for stem cell pluripotency are highlighted. Proteins underlined
are tagged baits for affinity purification. Thick lines indicate interactions confirmed by coIP studies

[45, 91, 95]. Black circles indicate proteins whose knockout results in defects in proliferation and/
or survival of the inner cell mass or other aspects of early development; gray circles indicate

proteins whose reduction by RNA-mediated interference results in defects in self-renewal and/or

differentiation of ESCs; dotted circles are proteins whose knockout results in later developmental

defects; white circles denote proteins for which no loss-of-function data are available
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6.3 Protein Complexes Associated with Nanog, Oct4 and Sox2

6.3.1 The Nanog Interactome

Genetic studies have defined Nanog as a key self renewal regulator that is essential

for early development [14, 58] and for ground-state pluripotency of the inner

cell mass (ICM) [77] and its in vitro derivative ESCs [99]. Nanog is also required

for reprogramming of somatic cells to an embryonic pluripotent state [77] and

conferring pluripotency to somatic cells upon cell fusion [76]. ESCs lacking Nanog

exhibit compromised self-renewal and tend to differentiate toward endodermal

lineage. In contrast, enforced expression of Nanog results in enhanced self-renewal

at the expense of differentiation propensity [13].

As a divergent homeobox protein, Nanog likely homodimerizes [59, 90]

and function in concert with other critical factors such as Oct4 [62] and Sox2 [3].

To further understand the interactive nature of Nanog, we have explored the

protein interaction network in which Nanog operates in mouse ESCs. We employed

metabolic biotin tagging strategy (Fig. 6.2) for affinity purification of Nanog pro-

tein complexes and its associated partner protein complexes followed by MS-based

microsequencing [40]. Large-scale purifications were performed with both one-step

(streptavidin capture alone) or tandem (FLAG-immunoprecipitation followed by

streptavidin capture) [89]. A set of consistent, stringent selection criteria were then

applied to each AP-MS experiment to ensure identification of bona fide candidate
proteins: first, due to the nature of in vivo biotinylation, there are background

proteins present in both control and tagged samples consisting of mostly naturally

biotinylated carboxylases and their associated enzymes as well as some ribosomal

proteins. These have been well characterized [20] and thus were removed from the

final candidate list; second, some proteins may be identified in both control and

tagged samples during the one-step purification. In this case, only candidates with

predominantly higher peptide numbers identified by MS in the tagged as compared

with the control samples were selected. Alternatively, tandem affinity purification

were also performed to confirm such candidates; third, proteins with documented

membrane, cytoplasmic, or mitochondrial localization, if present, were excluded;

fourth, for proteins specific to tagged samples, only those with �2 peptides

sequenced from at least two independent purifications (either two singles or one

single and one tandem) were included in the final candidate list. We have identified

a total of 17 proteins of highest confidence that are physically associated with

Nanog, either directly or indirectly through other Nanog interacting proteins [91].

In an iterative fashion we then identified partners of several Nanog-associated

proteins (including Oct4) and constructed the protein interaction network

surrounding Nanog, i.e., the Nanog interactome (Fig. 6.3).

There are four outstanding features associated with the Nanog interactome.

First, the network is remarkably enriched for proteins that are required individually

to control the survival or differentiation of the ICM or aspects of early embryonic

development (Fig. 6.3a). Second, most genes encoding the proteins within the

network are co-regulated and, specifically, downregulated during ESC differentiation
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based on available microarray data from ESC differentiation studies [69] (Fig. 6.3b).

Third, when compared with the target genes of Nanog and Oct4 from the ChIP-

on-chip [9] or ChIP-PET [50] studies, a notable feedback regulation mode was

evident: many (at least 56%) of the genes encoding the proteins of the network

[e.g., Sall4 [95]] are putative Nanog and/or Oct4 targets that also serve as “upstream”

effectors to control, either positively or negatively, their own transcriptional regula-

tion (Fig. 6.3c). Fourth, a number of factors in the Nanog interactome with both

ESC-specific and ubiquitous expression patterns connect to several epigenetic regu-

latory pathways. These include the histone deacetylase NuRD (P66b and HDAC2),

PRC1 (YY1, RNF2/Ring1B and Rybp) and SWI/SNF chromatin remodelling

(BAF155) complexes (Fig. 6.3d). The ESC state is marked by open chromatin and

hypertranscription [86] such that multiple loci encoding developmental regulators are

often associated with bivalent chromatin marks and poised for imminent activation

upon differentiation [5]. Therefore, the repressive machinery embedded within the

pluripotency Nanog interactome provides a failsafe mechanism to prevent premature

expression of key developmental genes under such dynamically open chromatin

conformation of ESCs. Taken together, the Nanog interactome illustrates the require-

ment for both genetic and epigenetic regulatory control of ESC pluripotency [63] and

highlights the importance of transcriptional repression for stem cell pluripotency [17].

Functional studies using RNAi by other groups subsequently confirm several

proteins within the Nanog interactome for their function in ESC maintenance.

For example, Err2 (Esrrb) [36, 50], Rif1 [50], Sall4 [24, 49, 98, 102], Dax1

(Nr0b1) [61, 79] were individually confirmed by other candidate approaches.

In addition, genome wide RNAi studies [21, 26, 35] further validate a number of

other network proteins for their roles in self-renewal and pluripotency of ESCs. These

studies highlight the efficiency and validity of the biotin-mediated AP-MS strategy for

studying protein-protein interactions in ESCs. On the other hand, subsequent studies

identified additional Nanog interacting proteins that are not present in the Nanog

interactome, such as Smad1 [80], NFkB [85] and Med12 [87], suggesting that our AP

method is non-saturating. Alternatively, the purification condition, particularly the

high salt (350 mM NaCl) used in our initial study may be biased toward purifying

stronger interacting proteins. Therefore, future optimization of affinity purification

conditions will be needed to maximize AP strategies for proteomic studies in ESCs,

and future studies using improved AP conditions or complementary AP approaches

may uncover new partners of Nanog and reveal novel functions for Nanog in stem cell

pluripotency.

6.3.2 The Oct4 Interactome

Oct4 is vital to the development of an embryo during its early stages of differen-

tiation into somatic cells. Early studies found that the loss of Oct4 expression

in mouse embryos causes lack of development of the ICM of the zygote [62].

Oct4 interacts with multiple core pluripotency TFs and connects with several

epigenetic regulators in the Nanog interactome [91] (Fig. 6.3). Growing evidence
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suggests that Oct4 is the key player for genetic and epigenetic regulation of stem

cell pluripotency. First, Oct4 is an essential factor that functions alone or with

other ESC TFs for factor-based somatic cell reprogramming [68, 81, 82, 100].

Second, it cooperates with Sox2 and Nanog to repress Xist [60] and interacts with

CTCF to activate Tsix [22] in coupling X inactivation reprogramming to the control

of pluripotency during embryogenesis. Third, it interacts with Eset, the histone

H3K9 methyltransferase, to restrict extra-embryonic trophoblast lineage potential

in ESCs [101]. Fourth, it controls the chromatin architecture of ESCs through

direct regulation of downstream targets encoding histone H3K9 demethylases

Jmjd1a and Jmjd2c, which function in part by modulating H3K9 methylation of

the pluripotency factors Tcl1 and Nanog, respectively [51].

While the genomic loci occupied by Oct4 have been extensively identified in

both mouse [10, 41, 50] and human [9] ESCs, the spectrum of Oct4 interaction

partners is underexplored. While the Nanog interactome encompasses Oct4 and

several Oct4-interacting proteins, the Oct4-centered protein interaction network

had not been fully explored until two recent complementary studies [67, 88].

These two studies both employed the 3�FLAG tag for affinity purification.

The van den Berg study [88] took advantage of the ZHBTc4 ESCs [64] and

established an ESC line that expresses 3�FLAG-Oct4 in the absence of endoge-

nous Oct4 (Fig. 6.4a). The Pardo study [67] employed BAC transgenesis to

introduce a tandem tag (3�FLAG and calmodulin binding peptide-CBP) fused

to Oct4 under the endogenous Oct4 regulatory elements (Fig. 6.4) at a sub-

endogenous level (30% wt) and integrated it in a precise location in the mouse

genome. Again, as we pointed out for the Nanog interactome study, the current

two Oct4 network studies are also limited: there are 54 and 92 Oct4-interacting

proteins identified, respectively, by the two studies with mere 20 common

proteins (Fig. 6.4). This is largely due to the different experimental platforms

and conditions employed by the two studies. It is unclear at this point whether

the bona fide Oct4-centered interactome should be constructed as a union or

intersection of the two data sets [46]. Therefore, additional complementary AP-

MS studies are needed to resolve the issue. Nevertheless, several consistent

features are associated with the two Oct4-centered interactomes: first, the Oct4

interactome is also enriched for factors critically important for ESC maintenance

and early development; second, the majority of the genes encoding these two

Oct4 interactome proteins are co-regulated, and particularly downregulated upon

ESC differentiation; third, expression of the majority of Oct4-interacting proteins

is controlled by Oct4 and other key ESC transcription factors, suggestive of the

intricate linkage between transcriptional regulatory networks and protein interac-

tion networks; fourth, both Oct4 networks connect with epigenetic regulatory

complexes such as NuRD and SWI/SNF (Fig. 6.4b), which is consistent with the

findings in the Nanog interactome (Fig. 6.3). Overall, these data suggest that the

Nanog and Oct4 interactomes are inherently connected. Although the detection

of Nanog in the two Oct4 interactome studies is either not present [88] or

minimal [67], Oct4 has been confirmed to be one of the interacting proteins of

Nanog in the Nanog interactome [91] and in the endogenous Nanog protein

complexes [48].
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6.3.3 The Endogenous Nanog and Oct4 Protein Complexes

Due to their essential roles in regulating self-renewal and pluripotency of ESCs, the

two homeodomain transcription factors Nanog and Oct4 are under intensive study

and their endogenous protein complexes have also been sought by antibody-based

affinity purification strategies [48, 67, 88]. The study by Liang et al. [48] showed

that both Nanog and Oct4 interact with each other and associate with proteins

from multiple repression complexes, such as NuRD, Sin3A and Pml complexes.

Fig. 6.4 The Oct4 interactome for pluripotency of mouse ESCs. (a) Summary of the strategies

and results of the two Oct4 network studies [67, 88]. Note the limited overlap between the two

studies. (b) Network presentation of the two Oct4 interactomes (Reproduced from Cell Stem Cell

with permission)
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Surprisingly, of the various core components in the NuRD complex with which

Nanog and Oct4 interact, Mta1 was preferred, whereas Mbd3 and Rbbp7 were

either absent or present at a sub-stoichiometric levels [48]. The so-called Nanog

and Oct4 associated deacetylase (NODE) contains histone deacetylase (HDAC)

activity that is comparable to NuRD, and retains its association with Nanog

and Oct4 in Mbd3�/� ESCs [48]. However, the NODE complex may simply

be the byproduct of the insensitivity of the affinity approach and suboptimal

immunoprecipitation condition employed in that study, which was manifested

by the limited number of Nanog- and Oct4-interacting proteins identified [48].

The association of Nanog and Oct4 with the conventional NuRD rather than the

peculiar NODE repression complex in ESCs was supported by the two indepen-

dent Oct4 immunoprecipitation studies that yielded a greater number of candidate

interacting proteins in the Oct4 complexes including Mbd3 and several other

NuRD components with high confidence [67, 88]. Nevertheless, it is clear that

Nanog and Oct4 associate with multiple repressor complexes to regulate target

gene expression and control ESC fate [48, 91].

The number of candidate interacting proteins identified with such an antibody-

based IP approach from all the three studies (Fig. 6.5) is much smaller than that

from the epitope tagging strategies (Fig. 6.4), due likely to aforementioned inherent

limitation associated with the antibody-based AP, i.e., low affinity and high non-

specificity (Fig. 6.1). Therefore, it is important to bear in mind that antibody-based

AP should serve only as a complementary approach, but not a gold standard,

for identification and validation of potential interacting proteins of a certain protein

of interest.

6.3.4 The Sox2 Protein Complexes in ESCs

Although Sox2 is one of the core ESC factors (together with Nanog and Oct4),

the mechanism by which Sox2 controls the fate of ESCs is much less well defined.

Like Nanog and Oct4, Sox2 expression is also dosage sensitive for stem cell

maintenance [43], which highlights the need to decipher Sox2 protein complexes

and its interaction network in understanding stem cell pluripotency. Sox2 is well

known for its close partnership with Oct4 in target gene regulation [74, 93],

however, the evidence for their physical association in protein complexes remains

elusive. In one study, Sox2 has been co-purified with Oct4 as part of an expanded

Oct4 interaction network [88], however, Sox2 has not been identified in another

related Oct4 network study [67] or in the Nanog interactome containing Oct4 [91].

This may reflect the non-saturating nature of affinity purification approaches or

the weak interaction between Oct4 and Sox2. Alternatively, there could be only

substoichiometric levels of Sox2 in the Oct4 protein complexes and vice versa.
Small increase of Sox2 expression level in ESCs promotes their differen-

tiation [43], which compromises the epitope-based AP strategy with ectopic expres-

sion of tagged Sox2 in ESCs. Therefore, future endeavor to dissect Sox2 protein

complexes in ESCs will require careful manipulation of the ectopic expression of
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the epitope-tagged Sox2 or adoption of a strategy employing the transgenic rescue

of the Sox2 knockout ESCs with the epitope-tagged Sox2. Interestingly, the prote-

omics studies of Sox2 during early differentiation of ESCs has identified >60

nuclear proteins that associate with Sox2, and a significant number of the identified

Sox2-associated proteins also interact with Oct4 and Nanog [56]. While the study

may have captured many Sox2-interacting proteins that are required for stem cell

maintenance and yet are still active during early stage of differentiation, future

studies purifying Sox2 complexes and mapping the Sox2-centered interactome in

ESCs are needed to gain a comprehensive understanding of Sox2 function in

regulating genes required for self-renewal and pluripotency of ESCs.

6.4 Future Directions

Stem cell research has evolved in the post-genomics era with increasing application

of proteomics approaches [92] and high throughput systems biology approaches

to define lists of molecular “parts” and regulatory interactions between the “parts”

in both undifferentiated ESCs and their differentiated progenies [53, 54, 96].

The analysis of protein complexes and protein-protein interactions is essential for

understanding mechanisms of ESC self-renewal and pluripotency. Deploying

MS-based proteomics approaches such as AP-MS to decipher protein complexes

and dissect protein interaction networks surrounding key pluripotency transcription

factors will likely be one of the major scientific inquires in the near future.

Fig. 6.5 Comparison of the Nanog and Oct4 interacting proteins identified by multiple

studies. (a) Nanog-interacting proteins; (b) Oct4 interacting proteins. Data presented are from

four published studies: Wang [91], Liang [48], Pardo [67] and van den Berg [88]
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6.4.1 High Throughput Experimental System
for Network Reconstruction in ESCs

Proteins are much more chemically and structurally diverse than their nucleic acid

counterparts, making them intrinsically less suitable for large-scale high-throughput

analyses. Large scale protein-protein interaction studies using a high throughput and

systematic AP-MS approach were largely confined to cellular systems that are

amenable to efficient transfection or genetic engineering such as Escherichia coli
[11], Saccharomyces cerevisiae [27, 44] and human HEK293 cells [25, 29, 39]. The

current AP-MS strategies (one gene-one protein-one ESC line) employed in the ESC

research [67, 88, 91] are still quite low throughput and time consuming. Considering

the exponential growth of the “part-lists” of stem cell factors identified during the

past few years owing to the development ofmicroarrays and deep sequencing as well

as genome wide RNAi screens, improved AP-MS strategies will have to be devel-

oped to meet the demand of high throughput network reconstruction. Future efforts

should be directed to develop an integrated strategy for AP-MS in ESCs with the

following features: (1) rapid generation of multiple ESC lines bearing epitope

tagged baits of interests. Combined lentiviral technology with Gateway cloning

technology will expedite cloning of cDNA compatible with publicly and commer-

cially available cDNA libraries and establish stable ESC lines by lentivirus infection

[55]; (2) increased yields in protein complex preparation for affinity purification.

Due to the dosage sensitivity of many key stem cell factors, the ectopic expression of

epitope tagged baits is controlled in a minimal level to preserve the functional

integrity of ESCs and avoid formation of the spurious protein complexes due to

overexpression. Therefore the total amount of the protein complexes associated with

the tagged baits is also limited. A combined vector system allowing tagged bait

cDNA expression with simultaneous knockdown of the endogenous protein will be

one of the options for increasing recovery of the protein complexes associated with

the bait. The added bonus of this transgenic rescue strategy is that the functionality

of the tagged bait is also confirmed; (3) direct liquid chromatography tandem MS

(LC-MS/MS) analysis of purified complexes to improve the sensitivity and repro-

ducibility of protein identification. The current AP-MS workflow with SDS-PAGE

fractionation before MS analysis (Fig. 6.2b) presents a major experimental bottle-

neck in large-scale and high throughput studies of the protein complexes in ESCs.

Development of a strategy to remove endogenously biotinylated proteins (the major

background proteins of high abundance in the in vivo biotinylation system) and

optimization of the affinity purification condition for chemical compatibility of the

sample with subsequent LC-MS/MS will be necessary to reach this goal.

6.4.2 Protein-Protein Interactions and Stem Cell Heterogeneity

Heterogeneity is a hallmark of ESCs that might have evolved as a mechanism

that enables stem cells to respond to differentiation-inducing signals while retaining
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their self-renewal potential [30]. ESCs under undifferentiated culture condition

show fluctuating expression levels of a number of genes including stem cell

specific factors such as Nanog, Rex1, Dppa3 (Stella), Pecam1, Zscan4 and genes

normally associated with cell differentiation such as Brachyury/T and Twist2

(see review [83]). The current methodology inmapping the interactome only averages

interaction profiles over a large quantity of individual cells with heterogeneous or

stochastic expression of some network proteins such as Nanog and Rex1 in the Nanog

interactome. Therefore, it is quite possible that, although the extensive protein

interactions will likely be present in individual cells, not all of the identified intera-

ctions operatewithin any given individual cell. For example, in pluripotentNanog null

ESCs [14] the Nanog interactome may be compensated by other factors and the ESC

state is stabilized by other interactomes such as theOct4 interactome. It is not currently

possible to construct interactomes at the single cell level; however, one could interro-

gate limited protein-protein interactions from the existing interactome using fluores-

cence resonance energy transferor related techniques combined with imaging to

gain insights into protein-protein interactions and functional stem cell heterogeneity

in single cells. In this regard, implementation and improvement of single cell analysis

platforms [32, 84] (also see Chap. 1 Review byArai in this book) will be the necessary

step toward this goal.

6.4.3 Quantitative Protein-Protein Interactions
for Stem Cell Pluripotency

ESCs are sensitive to the dosage of Nanog [34], Oct4 [64] and Sox2 [8, 43]. As a

key pluripotency factor, Nanog has been demonstrated to form dimers [59, 90], and

Nanog dimerization is critical for interaction with multiple pluripotency network

proteins [90]. However, current interactome studies cannot distinguish the mode of

action of these dosage sensitive TFs relative to other factors, and it is also unknown

whether the monomers or dimers of Nanog form different protein complexes in

controlling subset of genes important for the pluripotent state. In addition, Oct4 and

Sox2 often act together to regulate a subset of target genes, however, the stoichio-

metric level of each partner in the Oct4-Sox2 protein complexes cannot be defined

by current AP-MS approaches. Reprogramming somatic cells to naı̈ve pluripotency

is associated with erasure of epigenetic memory [42, 71] concomitant with gradual

increase of Nanog, Oct4 and Sox2 expression and consolidation of the core

transcriptional regulatory network [71] that is interdependent on the pluripotency

interactome. How dosage sensitivity alters composition of protein complexes

and transcriptional regulation of genes controlling stem cell pluripotency remains

to be explored. The future efforts to refine the biochemical approaches to isolate

distinct protein complexes in combination with quantitative MS technology such as

iTRAQ for relative quantitation [70, 104] (see Chap. 5 in this volume for more on

iTRAQ) and MRM/MS (multiple reaction monitoring-MS) [2, 28] for absolute
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quantitation will be necessary to decipher quantitative relationship of the

interacting proteins. In particular, the MRM/MS assay quantifies a specific tryptic

peptide that is selected as a stoichiometric representative of the cleaved protein

against an internal synthetic stable isotope-labeled peptide, allowing for the abso-

lute measurement of protein concentration [2, 28].

6.4.4 Interactome Dynamics During Stem Cell Fate Changes

The pluripotency interactome so far provides static “snapshots” of undifferentiated

ESC state. The exciting therapeutic and regenerative potential of ESCs will only be

realized during their fate change to generate more differentiated progenies. Molec-

ular regulation of stem cell fate entails a complex and coordinated action among

multilayered regulatory pathways (DNA, mRNA/miRNA and protein) that eventu-

ally converge in dynamic protein expression and intricate protein interactions

governing distinct cellular identity. Therefore, the interactomes during stem cell

fate change are dynamic, and methodologies need to be developed in the future to

measure interactome dynamics during cell fate change so as to maximize genera-

tion of specific cell types for therapeutic application. One recent study has provided

a powerful experimental system to interrogate the Nanog interactome dynamics

after shRNA-mediated downregulation of Nanog in ESCs [52]. In addition, another

study employed an inducible system to drive Sox2 overexpression and monitor the

composition of ectopic Sox2-associated protein complexes during early stage of

ESC differentiation, which identified another Sox family protein, Sox21, as a novel

regulator for stem cell fate [56]. However, a direct comparison with Sox2 network

in the pluripotent state and its dynamics during cell fate change is not possible due

to the lack of the Sox2 interactome in ESCs.

6.5 Concluding Remarks

Recent efforts in systematically profiling gene expression in ESCs and global genome-

wide functional RNAi screens [18, 21, 26, 35] have yielded a wealth of high through-

put data and provided a long molecular ‘parts list’ of regulatory factors important for

ESC self-renewal and pluripotency. How these ever-growing ‘molecular building

blocks’ are interconnected into functional regulatory networks that are ultimately

responsible for self-renewal and differentiation of ESCs is unclear. The proteomic

studies deciphering protein complexes and protein-protein interactions in ESCs will

continue to be an area of active research that likely will bear fruit in the near future.
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Notes While this book chapter is in the final production stage, a more sophisticated Oct 4

interactome has been published by the author’s group (Ding et al., Cell Research 22:155–167,

2012; PMID 22083510).
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