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ABSTRACT
Ten-eleven translocation (TET) methylcytosine dioxygenases are
enzymes that catalyze the demethylation of 5-methylcytosine on
DNA. Through global and site-specific demethylation, they regulate
cell fate decisions during development and in embryonic stem cells by
maintaining pluripotency or by regulating differentiation. In this
Primer, we provide an updated overview of TET functions in
development and stem cells. We discuss the catalytic and non-
catalytic activities of TETs, and their roles as epigenetic regulators of
both DNA and RNA hydroxymethylation, highlighting how TET
proteins function in regulating gene expression at both the
transcriptional and post-transcriptional levels.
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Introduction
Pluripotency refers to the ability of specific kinds of cells, such as
embryonic stem cells (ESCs) and induced pluripotent stem cells
(iPSCs), to give rise to all cell types of the adult body. The process
of DNAmethylation – the addition of a methyl group at cytosine on
DNA (5-methylcytosine, 5mC) – is closely associated with
pluripotency (Wang and Li, 2017) as it plays a key role in
regulating gene expression. The effects of DNA methylation on
transcription vary by methylation regions: hypermethylation on
promoters, cryptic enhancers, and super-enhancers can be
repressive (Baribault et al., 2018), whereas high gene-body
methylation is reported to be associated with highly expressed
genes (Ball et al., 2009; Hon et al., 2012).
The gain, loss and maintenance of methyl marks on cytosine is

the result of a balance between three interconnected pathways: the
acquisition of de novo methylation marks via the action of DNA
methyltransferase 3 (DNMT3); the maintenance of existing
methylation by DNA methyltransferase 1 (DNMT1); and the
active replication-independent erasure of DNA methylation by ten-
eleven translocation (TET) proteins. The TET proteins, which
include TET1, TET2 and TET3, belong to an evolutionarily
conserved family of dioxygenases that can convert 5mC to 5-
hydroxymethylcytosine (5hmC) (Hu et al., 2015b). TET1 was the
first to be reported for its catalytic ability to convert 5mC to 5hmC
(Tahiliani et al., 2009), followed by TET2 and TET3, which carry
out similar reactions (Ito et al., 2010). Moreover, TET proteins can
further generate 5-formylcytosine (5fC) and 5-carboxylcytosine
(5caC) by oxidizing 5hmC (Ito et al., 2011).

5hmC levels are closely associated with transcription. In both
ESCs and neural progenitor cells (NPCs), genes with low expression
generally exhibit abundant 5hmC at their promoters, whereas genes
with high expression show depleted 5hmC at their transcription start
site (TSS) regions. However, high 5hmC levels in gene bodies are
positively correlated with high gene expression levels in ESCs, but
with low gene expression levels in NPCs (Shi et al., 2017; Tan et al.,
2013), highlighting that the function of 5hmC can be context
dependent. Here, we review recent studies of TET proteins,
providing an overview of their structure, functions and roles in
pluripotent stem cells and early development.

Distinct features of TETs
Structure-function relationships of TETs
TET protein family members (TET1, TET2, TET3) share a common
core catalytic domain at their C termini (Fig. 1), which comprises a
double-stranded beta-helix (DSBH) domain (Iyer et al., 2009;
Tahiliani et al., 2009) for substrate oxidation (Shen et al., 2014b), a
conserved cysteine-rich domain for modulating chromatin targeting
(An et al., 2017; Yamagata and Kobayashi, 2017), and a large low
complexity insert that plays potential regulatory roles via post-
translational modifications, such as phosphorylation and glycosylation
(Bauer et al., 2015; Brill et al., 2009). TET1 and TET3 also contain a
CXXC domain that aids binding to chromatin at CpG-rich sequences,
whereas TET2 pairs up with IDAX protein (or CXXC4), an
independent CXXC domain-containing protein that was originally
encoded by the TET2 gene and separated from the catalytic domain of
TET2 through chromosomal inversion during evolution (Ko et al.,
2013). The CXXC domain is highly conserved and responsible for
associating with unmethylated CpG-containing sequences (Ko et al.,
2013; Zhang et al., 2010). Of note, the CXXC domain may affect the
genomic distribution of TET proteins, as indicated by enrichment of
TET1 at promoter CpG islands in mouse ESCs (mESCs) versus
enrichment of TET2 in gene bodies or enhancer regions (Hon et al.,
2014; Huang et al., 2014; Wu et al., 2011).

The dioxygenase activity of TETs has been dissected by a
number of crystallography studies (Hashimoto et al., 2014; Hu et al.,
2013, 2015a). For instance, Hu et al. characterized a truncated but
catalytically active form of human TET2, revealing that the
cysteine-rich domain and the DBSH domain form a compact fold,
stabilized by three zinc atoms (Hu et al., 2013). They further showed
that the DNA is located above the DSBH domain and that
methylated cytosine is inserted into the catalytic cavity and oriented
towards catalytic Fe(II) and 2-oxoglutarate (2-OG) (Hu et al., 2013).
The TET-mediated reaction can be split into two steps that require
Fe(II) and α-ketoglutaric acid (αKG)-dependent dioxygenases. The
first step, namely dioxygen activation, requires Fe(II) and αKG to
convert a dioxygen molecule into a highly active Fe(IV)-oxo
intermediate (Krebs et al., 2007), which then oxidizes the insert
substrate on the C-H bond at the second step, namely substrate
oxidation (Shen et al., 2014b).

Another study (Hashimoto et al., 2014) reported the crystal
structure of Naegleria TET-like protein (NgTet1), which shares
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significant sequence conservation and similarity with mammalian
TET1. This study discovered that NgTet1 uses a base-flipping
mechanism to access 5mC on DNA, whereby the DNA strand is
contacted from the minor groove and bent towards the major groove.
In addition, the cysteine-rich region is predicted to insert within the
corresponding loop L3, a four-residue short loop among the eight
NgTet proteins (Hashimoto et al., 2014). Previous studies reported
that loop L3was involved in the interaction with the minor groove of
DNA (Chen et al., 2010, 2013; Cho et al., 1994), and that the
cysteine-rich insertion of NgTet1 is in the DNA-binding interface
and thus might contribute to DNA binding (Hashimoto et al., 2014).

The expression of TETs
TET3 is highly expressed in oocytes and fertilized zygotes but
rapidly disappears during cleavage, whereas TET1 and TET2
expression increases during pre-implantation development (Gu
et al., 2011; Iqbal et al., 2011; Wossidlo et al., 2011). Although both
TET1 and TET2 act together during the same period of embryonic
development, their specific targets do not completely overlap.
TET expression has also been studied in different populations of

stem cells. In vitro, TET2 protein is highly expressed in naive ESCs
but not in primed epiblast-derived stem cells (EpiSCs), whereas
TET1 protein expression is activated during the naive-to-primed
transition in vitro (Fidalgo et al., 2016). In vivo, both TET1 and
TET2 show high expression in the inner cell mass (ICM) of the
mouse pre-implantation embryo (Rasmussen and Helin, 2016).
However, TET2 is downregulated after implantation, whereas TET1
maintains its expression up to the post-implantation epiblast at
embryonic day (E) 6.5∼7.5 (Khoueiry et al., 2017). After
gastrulation (at around E8.5), TET1 and TET3 are weakly
expressed in neural tube and head folds, whereas TET2 is not
detected. At E9.5-E10.5, all three TET genes are detected in the
developing brain (Khoueiry et al., 2017).

Catalytic activity-dependent and -independent functions of TETs
All three members of the TET family proteins possess Fe(II)- and 2-
oxoglutarate-dependent enzymatic activity. They remove 5mC by
oxidizing it to 5hmC and further oxidation products such as 5caC
and 5fC (Fig. 2A). These methylcytosine derivatives can be
processed to cytosine through thymine DNA glycosylase (TDG)
and a base excision repair (BER) mechanism (Cortellino et al.,
2011; He et al., 2011).
TET proteins mainly demethylate DNA at regulatory regions,

including enhancers, promoters and other distal regulatory elements
(Lu et al., 2014). At these regions, TET proteins may interact with
various proteins and non-coding RNAs to exert their regulatory
functions (Table 1). For example, the transcription factor NANOG
physically interacts with TET1 (and also TET2), and both TET1 and
TET2 facilitate NANOG-mediated somatic cell reprogramming in a

manner that is dependent on their catalytic activities (Costa et al.,
2013). An interesting mechanism involving the interaction of TET1
with the long non-coding RNA (lncRNA) TARID has been
described in human cells (Arab et al., 2019). TARID is
transcribed in an antisense orientation to the TCF21 gene and
favors the formation of a DNA-RNA structure termed the R-loop at
the TCF21 promoter, which is then bound by GADD45A and TET1
to trigger local DNA demethylation at CpG island sites within the
R-loop to activate transcription (Arab et al., 2019). Recently, TET1
catalytic activity was found to be necessary for the expression of
PGC7 (DPPA3), which binds and displaces UHRF1 (a key
component of mammalian DNA methylation machinery). This, in
turn, impairs DNMT1 recruitment and activity, thus driving DNA
demethylation (Mulholland et al., 2018).

TET1 can also indirectly affect the expression of some genes
independently of its catalytic activity by binding to certain
regulatory factors and protein complexes. For instance, TET1
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Fig. 1. Domain structure of mouse TET family
proteins. The C-terminal core catalytic domain is
highly conserved among all three TET family
members. It consists of a cysteine (Cys)-rich domain, a
DSBH domain, and a low complexity insert. The core
catalytic domain supports the oxidizing function of
TETs. The N termini of TET1 and TET3 contain a
CXXC domain that recognizes CpG-rich motifs on
DNA. TET2 lacks the CXXC DNA-binding domain;
however, it can interact with a separate CXXC domain-
containing protein, termed IDAX.
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Fig. 2. Regulatory functions of TET proteins. (A) Catalytic activity-
dependent functions of TETs. TET proteins carry out the oxidation of 5mC (into
5hmC, 5fC and 5caC) on DNA. (B) Catalytic activity-independent functions of
TETs. TET1 can recruit the PRC2 complex to CpG-rich sites at bivalent
promoters of PRC2-targeted genes, resulting in H3K27me3 at these regions
(top). TET1 can also recruit SIN3A and colocalizes with the SIN3A co-
repressor complex (e.g. SIN3A, HDAC1/2 and RBBP7, etc.) to repress target
genes (bottom).
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interacts with Polycomb Repressive Complex 2 (PRC2) (Neri et al.,
2013), a repressive complex that has histone methyltransferase
activity and is required for long-term epigenetic silencing. TET1 is
involved in the repression of PRC2-targeted developmental
genes through its recruitment of the PRC2 complex to chromatin.
TET1 binds to CpG-rich regions at the promoters of both
transcriptionally active and Polycomb-repressed genes. Chromatin
immunoprecipitation followed by sequencing (ChIP-seq) studies
have identified a group of TET1/PRC2 co-bound TET1-dependent
targets, among which are many lineage-specific genes including the
primitive endoderm markers Gata6 and Sox17, and the
trophectoderm markers Cdx2 and Eomes (Wu et al., 2011). ChIP
experiments have been used to further validate that TET1 recruits
PRC2 to the promoters of these genes to repress transcription in
ESCs (Wu et al., 2011) (Fig. 2B, top). Interestingly, this catalytic
activity-independent function in repressing lineage-specific genes
applies to only TET1 but not TET2 (Koh et al., 2011), perhaps due
to the lack of a CXXC DNA-binding domain in TET2.
Another interaction partner of TETs is the SIN3A/HDAC

complex (Vella et al., 2013; Williams et al., 2011), a histone
deacetylation activity-associated transcriptional repression complex
that is involved in early embryo development (Grzenda et al., 2009).
TET1 can recruit SIN3A to repress its target genes through catalytic
activity-independent functions (Williams et al., 2011) (Fig. 2B,
bottom). Moreover, both TET1 and TET2 are involved in forming a
multiprotein complex with the OGlc-NAc transferase OGT, SIN3A
and HDAC1. The recruitment of OGT to CpG-rich promoters
stabilizes TET1 at CpG-rich sites and facilitates its function in
promoting hypomethylation (Vella et al., 2013). On the other hand,
SIN3A can operate as a transcriptional co-activator of Lefty1,
which encodes a Nodal antagonist, by interacting with TET1 to
demethylate the Lefty1 promoter (Zhu et al., 2018). Taken together,
these studies highlight that both catalytic activity-dependent and
-independent roles of TETs contribute to their ability to regulate
gene expression in different kinds of cells.

TET protein functions in early mouse embryo development
During mammalian embryo development, cells undergo two
dynamic waves of demethylation. First, following fertilization,

both maternal and paternal genomes are globally demethylated in
zygotes (Saitou et al., 2012; Wu and Zhang, 2014). Global DNA
methylation reaches a relative low level in the pre-implantation
embryo, which is followed by increased methylation after the onset
of implantation (Zhang et al., 2018). The second wave of
demethylation then occurs in primordial germ cells (PGCs) of the
post-implantation embryo. PGCs are specified at around E6.25
during mouse embryonic development, and then undergo two
distinct DNA demethylation phases (Guibert et al., 2012;
Seisenberger et al., 2012), namely a genome-wide demethylation
phase and a locus-specific demethylation phase. The first phase
occurs from E7.25 to E9.5, and is predominantly induced by passive
demethylation (e.g. by replication and/or reduced DNMT activity).
The second phase occurs from E9.5 to E13.5, and involves both
TET1- and TET2-mediated oxidation (Piccolo et al., 2013; Vincent
et al., 2013) (Fig. 3).

During the first wave, TET3 mediates the rapid decrease of 5mC
signals, resulting in the generation of 5hmC, 5fC and 5CaC on the
paternal genome (Inoue et al., 2012, 2011; Iqbal et al., 2011;
Wossidlo et al., 2011). The maternal genome also undergoes TET3-
mediated oxidation (Guo et al., 2014), but to a lesser extent (Peat
et al., 2014; Shen et al., 2014a). However, for both parental
genomes, it is DNA replication, not TET3, that makes the dominant
contribution to demethylation, which was demonstrated by the
finding that DNA replication inhibition blocks demethylation
independently of TET3 function (Shen et al., 2014a). Moreover,
in terms of the difference in oxidation between the maternal and
paternal genomes, one possible explanation might be that PGC7
partially protects 5mC from TET3-mediated conversion to 5hmC by
binding to maternal chromatin containing dimethylated histone H3
lysine 9 (H3K9me2) (Nakamura et al., 2012). Another study
showed that PGC7 is recruited to the maternal genome and interacts
with TET3 to suppress its enzymatic activity, thus protecting the
maternal genome from demethylation (Bian and Yu, 2014).

In the second wave of demethylation in PGCs, TET1 and TET2
regulate locus-specific demethylation, but not genome-wide DNA
demethylation (Vincent et al., 2013; Yamaguchi et al., 2012, 2013).
A crucial set of germline reprogramming-responsive genes, such as
Dazl, Mael and Rad51c, can be activated via TET1-dependent and

Table 1. TET protein interactions/protein complexes and their related functions

TET complex/interacting protein Functions References

TET1↔GADD45A TET1 is recruited by GADD45A to the R-loop formed by TARID RNA at the TCF21 promoter for
demethylation, thus activating the tumor suppressor gene.

Arab et al., 2019;
Arab et al., 2014

TET1↔PRC2 TET1 contributes to silencing of PRC2-targeted developmental regulators by facilitating
recruitment of PRC2 to CpG-rich promoters.

Wu et al., 2011

TET1↔SIN3A TET1 and SIN3A form a complex and co-activate the Lefty1 promoter by recruiting TET1 to
demethylate the Lefty1 promoter. The PAH1 domain of SIN3A is essential for the interaction,
which is important for ESC pluripotency.

Williams et al., 2011;
Zhu et al., 2018

TET1/2↔OGT↔SIN3A↔HDAC1 OGT binds to CpG-rich gene promoters to affect TET1 hypomethylation activity at these sites. Shi et al., 2013;
Vella et al., 2013

TET1↔NANOG TET1 binds to theNanog promoter, preventing it from being hypermethylated. NANOG physically
interacts with TET1/TET2, and the TETs facilitate NANOG-mediated reprogramming in a
catalytic activity-dependent manner.

Costa et al., 2013

TET2↔PSPC1 PSPC1 recruits TET2 to newly synthesizedMERVLRNA for its demethylation, which destabilizes
the MERVL RNA to restrict the 2C population in mESCs.

Guallar et al., 2018

TET1⊣ DNMT3B TET1 inhibits the binding of DNMT3B to bivalent promoters. TET1 maintains the PAX6 bivalent
promoter in a hypomethylated state in human ESCs, thus regulating the cellular differentiation.

Verma et al., 2018

TET2⊣ DNMTs TET2 balances transcription factors (e.g. OCT4, SOX2) occupancy on enhancers, which are
more prone to methylation by DNMTs, thus regulating the timing of transcriptional changes
during the differentiation.

Hon et al., 2014

TET1↔ZFP281 ZFP281 interacts with TET1 to activate miR-302/367, thus repressing TET2 expression to
establish and maintain primed pluripotency.

Fidalgo et al., 2016
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-independent functions. Such genes are involved in gamete
generation and meiosis (Hill et al., 2018). In addition, PGC7 has
been reported to interact with TET2 and TET3 to suppress their
enzymatic activity, and PGC7 knockdown induces DNA
demethylation at imprinting loci, such as Peg1 (Mest), Peg2 (Igf2)
andH19 (Bian and Yu, 2014). Thus, PGC7may have potential roles
in regulating the second demethylation wave.
The roles of TET1 and TET2 later in development have also been

explored. Both TET1 and TET2 are thought to be dispensable for
embryonic development, and corresponding single knockout mice
are viable and fertile (Dawlaty et al., 2011; Li et al., 2011).
However, Tet1 mutant mice display a slightly smaller body size at
birth (Dawlaty et al., 2011), as well as reduced female germ cell
numbers and fertility due to defects in meiosis in oocytes
(Yamaguchi et al., 2012). In addition, only 30% of the expected
number of Tet1 knockout (KO) pups survive to birth, indicating
potential embryonic lethality of the Tet1 KO phenotype. In order to
understand better the roles of TET1 during embryonic development,
Khoueiry et al. (2017) generated new Tet1 KO mice in which both
the catalytic domain and the 5′ coding sequence are ablated. These
mice exhibit deformities in forebrain development at late
gastrulation (E9.5) and high mortality rates, in line with the early
embryonic defects caused by loss of Tet1. Tet2 deletion leads to the
development of myeloid malignancies in mice (Li et al., 2011;
Moran-Crusio et al., 2011; Quivoron et al., 2011). Both sexes of
Tet1 and Tet2 double knockout (DKO) mice are fertile albeit
displaying reduced fertility and smaller ovaries in the case of
females (Dawlaty et al., 2013). However, the DKO of Tet1 and Tet3
is embryonic lethal, and Tet1−/−Tet3−/− pups do not survive to birth
(Kang et al., 2015). Early developmental abnormalities are evident
in Tet1/3 DKO eight-cell embryos, as characterized by delayed or
aborted development. Tet1/2/3 triple knockout (Tet TKO) embryos
develop past the implantation stage, indicating that TET function is
dispensable for the development of the egg cylinder (Dai et al.,
2016). Even until the onset of gastrulation (E6.5), Tet TKO mutants

appear similar to control embryos. However, Tet TKO embryos are
much smaller compared with control embryos and exhibit defective
mesodermal migration at E7.5. Apparent gastrulation defects are
also observed at E8.5, with embryos having unrecognizable
headfolds, heart, somites and gut tube. These knockout studies
highlight the functional redundancy of TETs, which may mask
developmental defects in single or double KO embryos. Overall,
Tet1 and Tet3 deficiencies are likely to cause gastrulation defects,
whereas Tet2 deficiency causes myeloid malignancies.

TET functions in the totipotent state
Following fertilization, the resulting zygote starts a developmental
program to give rise to a new organism. At the two-cell stage, each
blastomere of the mouse embryo is capable of differentiating into a
complete organism. This ability of a single cell to generate an entire
organism, including embryonic and extra-embryonic structures, is
called totipotency. The key features of totipotent embryos are:
activation of transposable elements such as LINE-1 and MERVL;
expression of Zscan4, a two-cell-specific gene that is responsible for
genome stability and telomere elongation; changes in DNA and
histone modifications; and chromatin reconfiguration (for a review,
see Lu and Zhang, 2015). A number of studies have shown that TET
proteins play a role in controlling totipotency. For example, Lu et al.
(2014) demonstrated that TET proteins regulate the two-cell embryo
(2C)-like state of ESCs. Specifically, they showed that Tet TKO
mouse ESCs exhibit increased expression of Zscan4, which leads to
telomere elongation by promoting telomere-sister chromatid
exchange. GADD45 (growth arrest and DNA damage 45)
proteins, which are regulators of TET-mediated demethylation,
can also promote the 2C-like state and two-cell embryos, and
Gadd45a/b/g TKO mESCs show impaired transition to a 2C-like
state. Locus-specific DNA hypermethylation of ∼7000 sites and the
consequent misregulation of TET and DNMT targets inGadd45a/b/
g TKOmESCs (Schule et al., 2019) are speculated to be responsible
for this impaired transition, although the regulatory relationship
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Fig. 3. Overview of TET protein functions during early development. After fertilization, DNA methylation levels are quickly decreased through replication-
dependent passive DNA demethylation and TET3-mediated oxidation. Demethylation of the maternal genome occurs to a lesser extent than that of the paternal
genome. 5mC levels are relatively low at the blastocyst stage (E3.5). This is followed by DNA methylation re-establishment, with 5mC levels reaching a high
at the epiblast stage (E6.5). During the period of E7.25 to E9.5, the genome is demethylated in a replication-dependent but TET-independent manner. TET1 and
TET2 then convert the remaining 5mC to 5hmC. This is then followed by a replication-dependent process to complete demethylation during PGC reprogramming.
Finally, 5mC levels are regained and return to a high level during oogenesis and spermatogenesis.
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between TETs and GADD45 in the transition remains to be
determined (Fig. 4). Nonetheless, these studies suggest that the
timely expression of TETs and their regulators may be closely
associated with establishment of the 2C state.

The role of TETs in maintaining pluripotency of mESCs
ESCs maintain their pluripotent state through a dynamic network of
transcription factors and enzymes (Kim et al., 2008; Loh et al.,
2006; Pan and Thomson, 2007; Wang et al., 2006). One of the main
pluripotency factors, OCT4 (POU5F1), directly upregulates the
expression of Tet2 by binding to its proximal promoter region (Koh
et al., 2011; Wu et al., 2013). Regulation of the Tet1 gene is also
mediated by OCT4 (Koh et al., 2011) together with two other
stemness factors, NANOG and MYC (Neri et al., 2015). Nanog is
also a direct target of TET1: by binding to the Nanog promoter in
mESCs, TET1 prevents it from hypermethylation. Compared with
Tet1 KO mESCs, Tet TKO cells show mostly unaltered expression
levels of pluripotency factors, such as OCT4, NANOG and SOX2,
as well as similar proliferation and colony formation rates as wild-
type control cells (Dawlaty et al., 2014). These data demonstrate that
Tet TKO has no obvious effect on the maintenance of ESCs. On the
other hand, during the naïve to primed pluripotency transition, the
transcription factor ZFP281 interacts with TET1 to activate the
transcriptional target miR-302/367. By activating this primed state-
specific miRNA and physically interacting with HDAC co-
repressor complexes, ZFP281 represses Tet2 expression at both
the transcriptional and post-transcriptional levels to establish and
maintain primed pluripotency. Conversely, ectopic TET2 alone
efficiently reprograms primed cells towards naïve pluripotency
(Fidalgo et al., 2016).
TET proteins can also regulate pluripotency by controlling the

length of telomeres, which help sustain genomic stability and are
required for self-renewal and pluripotency of ESCs and iPSCs
(Huang et al., 2011; Liu, 2017). Studies conducted in mESCs
deficient for TET1, TET2, or both have indicated a reduction in
telomere length (Yang et al., 2016). Indeed, Tet1 or Tet2 single
knockdown cells show decreased expression of telomere
recombination genes, such as Dmc1, Rad50 and Smc1b, and a
minimal change in the expression of telomerase genes (Yang et al.,
2016). In addition, the methylation writer and maintenance factors
DNMTs and the methylation eraser TETs are closely related and
influence telomeres (Gonzalo et al., 2006; Lu et al., 2014; Yang
et al., 2016). For example, Tet1/Tet2 double knockdown or
knockout induces the expression of Dnmt3b, resulting in an

elevated ratio of 5mC/5hmC, which leads to telomere shortening
and chromosome instability (Lu et al., 2014; Yang et al., 2016).
These studies demonstrate that TET proteins are important for
telomere maintenance and thus play important roles in maintaining
pluripotency (Fig. 5A).

The role of TETs in maintaining pluripotency in human ESCs
Human ESCs (hESCs), derived from the pre-implantation stage
ICM (Crook et al., 2017), differ significantly from mESCs at both
molecular and functional levels. They are considered to represent a
later state of epiblast development, resembling primed mEpiSCs
with regards to their morphology, developmental potency, gene
expression and epigenetic modifications (Hackett and Surani, 2014;
Rossant, 2015; Smith, 2017). Based on studies of mESCs (Koh
et al., 2011; Olariu et al., 2016), and on recent studies of hESCs, it
has been proposed that TET proteins are crucial players in
maintaining pluripotency networks in human cells, acting through
their physical and functional interactions with core pluripotency
factors. For example, TET2 can bind to the NANOG promoter in
hESCs, whereas high NANOG promoter methylation and low
NANOG expression are detected in TET2-deficient cells (Langlois
et al., 2014). On the other hand, a recent study from the Huangfu
group (Verma et al., 2018) showed that TET proteins are crucial for
preserving bivalent promoters in hESCs in a hypomethylated state.
Using an iCRISPR platform, they generated TET1, TET2 and TET3
individual knockout hESC lines, as well as TET TKOs. TET TKO
hESCs show no difference in morphology, self-renewal capacity or
pluripotency gene expression compared with wild-type hESCs.
However, TKO hESCs are unable to form teratomas and are also
impaired in embryoid body differentiation, indicating crucial roles
of TETs in regulating cellular differentiation. They further found
and confirmed hypermethylation of bivalent promoters of several
developmental genes, such as the endoderm marker FOXA2, the
neuroectoderm marker PAX6, and the neural crest marker SOX10
(Verma et al., 2018). By focusing on the PAX6 bivalent promoter,
the researchers observed that, despite promoter hypermethylation,
PAX6 expression shows no change in hESCs, possibly due to a
low level of PAX6 expression at this stage. However,
hypermethylation of the PAX6 promoter prevents PAX6
activation during hESC differentiation, leading to impaired
neuroectoderm formation. In addition, they found that, upon
TET depletion, de novo methylation of bivalent promoters is
carried out by DNMT3B, global inactivation of which partially
reverses the PAX6 promoter hypermethylation in TKO hESCs,
demonstrating the dynamic competition between TET proteins
and de novo methyltransferases in controlling cell lineage
specification.

TET functions during ESC differentiation
TET proteins have also been associated with a broad range of
differentiation processes (Fig. 5B). Individual knockdown of Tet1
and Tet2 causes alterations in different sets of genes. Deletion of
Tet2 leads to extensive 5hmC loss at enhancers, along with
enhancer hypermethylation. For example, the enhancer that
physically interacts with the Lefty1 gene is hypermethylated and
hypoacetylated in Tet2−/− mESCs, possibly explaining the
decreased expression of this gene observed in these cells (Hon
et al., 2014). When Tet2−/− ESCs are induced to differentiate into
NPCs, they show delayed induction of some neural marker genes,
such as Slit3, Lmo4 and Irx3 (Hon et al., 2014). On the other hand,
knockdown of TET1 results in selective upregulation of
differentiation genes, such as the trophectoderm markers Cdx2,

ESC state 2C-like state

GADD45a/b/g

Increased expression of 2C-specific genes   
Activation of transposable elements

TET1/2/3 

?

Fig. 4. TET protein functions in regulating the totipotent state. TET1/2/3
triple knockout promotes the transition from an ESC state to a two-cell-like (2C)
state that exhibits features of totipotency (Lu et al., 2014). However, the triple
knockout of GADD45a/b/g, which encode regulators of TET-mediated
demethylation, impairs this transition (Schule et al., 2019). The regulatory
relationship between TETs and GADD45 remains to be determined (as
indicated by the dashed line).
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Hand1 and Eomes, and downregulation of the neuroectoderm
markers Neurod1 and Pax6. Tet1 knockdown ESCs also display
Lefty1 downregulation and tend to differentiate into endoderm-
mesoderm lineages in embryoid bodies (Koh et al., 2011).
Consistent with this, increased endoderm and reduced
neuroectoderm differentiation is observed in hemorrhagic
teratomas formed by Tet1-depleted ESCs (Koh et al., 2011). Tet1/2
double knockdown results in downregulation of pluripotency-related
genes such as Esrrb and Prdm14 (Ficz et al., 2011), which are
reported to safeguard embryonic cells from adopting an endoderm
cell fate (Ivanova et al., 2006; Ma et al., 2011), resulting in increased
extra-embryonic lineage differentiation (Ficz et al., 2011).
TET3 knockout causes the promoter hypermethylation of

secreted frizzled-related protein 4 (Sfrp4) as well as deceased
gene expression, which may partially impair neuroectoderm
formation in serum-free embryoid body assays (Li et al., 2016).
Finally, Tet1/2/3 TKO mESCs show global impaired differentiation
ability, as characterized by poorly differentiated embryoid bodies
and teratomas (Dawlaty et al., 2014), which is consistent with the
impaired differentiation that occurs in human TET TKO ESCs
(Verma et al., 2018). Taken together, these studies indicate that
single and double TET deficiencies skew differentiation to certain
lineage-specific cell fates, and loss of all three TETs compromises
proper differentiation.

TETs and RNA modification
The recent discovery of reversible mRNAmethylation has provided
new insights into post-transcriptional gene regulation in eukaryotes.
In addition to 5′ caps and 3′ poly(A) tail modifications, eukaryotic
mRNA harbors several chemical modifications with apparent
regulatory functions. These modifications affect almost every
stage of mRNA metabolism: altering folding and structure,
regulating mRNA maturation, enhancing nuclear processing and
export to the cytoplasm, promoting mRNA translation, and
facilitating its decay (for a review, see Roundtree et al., 2017).
Although one of the most abundant mRNA modifications is N6-

methyladenosine (m6A) (Dominissini et al., 2012), several other
mRNA modifications exist, such as N1-methyladenosine (m1A),
pseudouridine (Ψ), 5-methylcytosine (referred to here as m5C
to distinguish from the DNA modification 5mC) and
5-hydroxymethylcytosine (referred to here as hm5C to distinguish
from DNA modification 5hmC). 5mC has long been known as a
DNA epigenetic mark. However, recent bisulfite treatment
experiments have revealed several m5C sites on tRNAs
(Khoddami and Cairns, 2013), which have been shown to have
protective functions against stress-induced tRNA cleavage
(Schaefer et al., 2009). Moreover, the oxidative derivative of
m5C, hm5C, has also been detected in RNAs from Drosophila (Fu
et al., 2014) to mammalian cells (Huber et al., 2015) and brain
tissues (Miao et al., 2016).

Interestingly, both TET1 and TET2 have been identified as novel
RNA-binding proteins (RBPs) (He et al., 2016), and it has also been
demonstrated that TET proteins possess catalytic activity that
oxidizes m5C to hm5C on RNA in vitro (Fu et al., 2014). We have
also shown that TET2 is recruited to chromatin through a DNA-/
RNA-binding protein, PSPC1, which is a component of paraspeckle
complexes (Guallar et al., 2018). By binding to ERVL- and ERVL-
associated transcripts, TET2 and PSPC1 regulate the expression of
these genes at the post-transcriptional level. Specifically, TET2
oxidizes m5C into hm5C on newly synthesized MERVL
RNA, dramatic enrichment of which is a hallmark of the 2C
population (Macfarlan et al., 2012). The increased hm5C mark on
MERVL RNA facilitates its destabilization and further degradation
(Fig. 6). We therefore propose that TET2-mediated RNA
hydroxymethylation may provide an additional regulatory layer to
properly control ERV expression and hence restrict the 2C
population in maintaining pluripotency of mESCs. However,
studies on mRNA m5C/hm5C modifications are just beginning,
with many unresolved issues. In one study, it was shown that TET2
is able to oxidize m5C to hm5C on Socs3 mRNA in the context of
myelopoiesis (Shen et al., 2018). In contrast, mass spectrometry
analysis showed very rare or absent hm5Cmodifications onmRNAs

TETs Maintain
telomere length

Genome
stability

Pluripotency
maintenance

DNMT
downregulation

Decreased
5mC/5hmC ratio 

TET1 TET2 TET3

Neural markers Nodal
antagonist

Hand1 

Trophectoderm markers 

Lmo4 Foxg1

Myh7 Tnnt2

Myh6 

Cardiomyocyte markers 

A  Pluripotency

B  Differentiation

Pax6

Neurod1 

Neuroectoderm
markers 

Irx3 LeftySox1Slit3 Cdx2 Eomes

Fig. 5. TET functions in pluripotency and cell differentiation. (A) TET proteins regulate pluripotency by maintaining telomere length (Lu et al., 2014;
Yang et al., 2016). They can also downregulate the expression of Dnmts, such asDnmt1, -3a and -3b, which decreases the ratio of 5mC/5hmC, thus contributing
to the maintenance of telomere length. This process is important for genome stability, which is essential for maintaining pluripotency. (B) TET functions in
differentiation. TET1, TET2, and TET3 affect the expression of diverse differentiation marker genes. Solid arrowheads indicate increased expression, inhibitory
symbols indicate decreased expression, and the dashed lines indicate delayed induction.
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in mESCs (Legrand et al., 2017). It is therefore possible that TET-
mediated RNA m5C/hm5C modifications make modified RNA
highly unstable and, hence, difficult to be detected.

Conclusions and perspectives
In summary, TET protein functions, including TET-mediated DNA
demethylation as well as functional interplay with other protein
complexes and non-coding RNAs, dynamically manifest in a
balance between maintenance of pluripotency and lineage
development. TET-mediated 5mC oxidation at promoter and
enhancer sites modulates the expression of cell fate-determining
genes to further facilitate the transcription of these genes during
lineage commitment; as such, a lack of 5mC oxidation (e.g. in the
case of Tet TKO) impairs proper differentiation of ESCs. In contrast,
Tet TKO cells display no obvious effects of the maintenance of
ESCs. The developmental defects that occur during gastrulation in
TKO mice are probably due to impaired lineage specification.
It is also clear that TET proteins exhibit non-catalytic functions,

interacting with many other proteins as well as being part of large
protein complexes. Unbiased protein-protein interaction screening
of TET-involved complexes has revealed that both TET1 and TET2
directly interact with the SIN3A/HDAC complex (Williams et al.,
2011), OGT (Shi et al., 2013; Vella et al., 2013) and NANOG
(Costa et al., 2013), and that TET2 also interacts with PSPC1 in
ESCs (Guallar et al., 2018). TET1 may also interact with PRC2,
although purification of the PRC2 complex failed to recover TET1
as an associated component, suggesting that the interaction between
TET1 and PRC2 may be transient and difficult to capture (Wu et al.,
2011). Alternatively, the PRC2-TET1 interaction could be
developmental stage dependent, as TET1 recruits PRC2 to
complexes at the promoters of lineage-specific genes in ESCs
and, upon differentiation, PRC2 is released from these complexes.
Indeed, TET1 also interacts with EZH2 and SUZ12, two PRC2
components, in mESCs but not in somatic cells (Neri et al., 2013). It
is well-recognized that the PRC2 complex has RNA-binding
capacity and can interact with a wide range of RNAs (Zhao et al.,
2010), including nascent coding RNAs or non-coding RNAs
(Kaneko et al., 2014, 2013). Therefore, it is possible that RNA-
mediated interactions between TETs and other partner proteins can
be achieved through either direct RNA-binding regions of TETs on
their C termini (He et al., 2016), or indirectly through other RBPs
such as PSPC1 (Guallar et al., 2018). Both direct and indirect
interactions of TETs with other proteins and RNAs, as well as their
functional roles are yet to be determined.
Another aspect of TET protein function that is poorly understood

is their regulatory activities on RNAs, particularly with regard to
establishment of the hm5Cmark on mammalian mRNAs. However,
it should be noted that a similar function of oxidizing m5C to hm5C
is well-established for dTet in Drosophila (Delatte et al., 2016). In
this context, dTet is the only conserved Tet ortholog in Drosophila,

and depletion of dTet in S2 cells decreases the formation of
hydroxymethylcytosine in RNA. Because m5C on tRNAs promotes
tRNA stability and protein synthesis (Tuorto et al., 2012), it is
possible that oxidizing m5C to hm5C on mRNAs may destabilize
target RNAs and promote degradation, as has been observed for
MERVL (Guallar et al., 2018). Thus, although the RNA m6A
decoration, including its writers, erasers, readers and functions in
RNA metabolism, is well-established (for a review, see Yang et al.,
2018), the dynamics and functions of RNA m5C/hm5C, especially
on mRNAs, await further investigation.

In closing, although steady progress has been made in
understanding TET functions in stem cells and development,
more studies are needed to reveal the mechanisms that underlie TET
functions in balancing pluripotency and differentiation, controlling
embryonic development and regulating RNAmodification and gene
expression.
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