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In mammals, early lineage specification in preimplantation and 
postimplantation embryonic development generates founder tis-
sues for all subsequent somatic development1. The first lineage 

specification starts at the morula stage, when the inner cell mass 
(ICM) and the trophectoderm (TE) begin to segregate2. The ICM 
contains both cells of the epiblast lineage, which give rise to the 
entire fetus, and cells of the primitive endoderm lineage, which form 
visceral endoderm (VE) and parietal endoderm3,4. VE becomes the 
chief metabolic component of the visceral yolk sac, and parietal 
endoderm contributes to the transient parietal yolk sac4. TE con-
tains progenitor cells for trophoblasts, which form the majority of 
the fetal-origin part of the placenta3. In mice, by embryonic day 6.5 
(E6.5), the anterior epiblast gives rise to ectoderm, and the poste-
rior proximal epiblast develops into the primitive streak, which then 
forms mesoderm and endoderm5. The resulting three germ layers 
contain virtually all progenitors for the future body plan6.

Notably, early cell fate commitment is accompanied by extensive 
epigenetic reprogramming2. For example, drastic demethylation 
and remethylation of DNA take place during early embryogenesis7. 
DNA methylation plays critical roles in gene repression, genomic 
imprinting, and X chromosome inactivation8. Deficiency in DNA 
methyltransferases (DNMTs) often leads to lethality or sterility7. 
Interestingly, defects in extraembryonic tissues, which provide both 
nutrients and developmental cues for embryonic development, are 
frequently found in mice deficient in DNMTs9–11. A large portion of 
DNA methylation in gametes is removed during preimplantation 
development7. The methylome in postimplantation embryos then 
forms part of the epigenetic basis for the entire body plan. DNA 
methylome reprogramming in preimplantation embryos has been 
studied extensively12–16. However, because of the limited materials 

available and the difficulty of tissue isolation in early embryos, 
lineage-specific regulation of transcriptomes and epigenomes 
in peri- and postimplantation embryos is poorly characterized. 
Here we conducted a comprehensive analysis of transcriptomes 
and whole-genome DNA methylomes at single-base resolution 
for major lineages that arise before and after implantation. This 
analysis, together with Hi-C experiments probing higher-order 
chromatin structure during the same period, provides unprece-
dented spatiotemporal views for the establishment of the molecular 
architecture regulating early cell fate commitment and body plan  
in mammals.

Results
Mapping global transcriptomes and DNA methylomes during 
early lineage specification. To study the transcriptional programs 
and epigenomes involved in early lineage segregation, we carefully 
dissected various tissues from peri- and postimplantation mouse 
embryos (DBA/2N male ×​ C57BL/6N female mice) using methods 
described previously17,18 (Fig. 1a, Supplementary Fig. 1a, Methods). 
These included ICM (E3.5 and E4.0), mural TE (E3.5), VE (E5.5 and 
E6.5), epiblast (E5.5 and E6.5), ectoderm (E7.5), endoderm (E7.5), 
mesoderm (E7.5), and primitive streak (PS) (E7.5). We chose TE 
and VE as representatives of extraembryonic tissues. Analysis of 
lineage-marker genes and transcriptomes strongly supported the 
correct identities of these tissues and dynamic transcription land-
scapes in early lineages (Supplementary Fig. 1b–e, Supplementary 
Table 1). E3.5 ICM and E4.0 ICM were grouped together and were 
distantly connected with all ICM-derived tissues from mice at E5.5 
to E7.5 (Supplementary Fig.  1e). Both the marker genes and the 
global transcriptome of endoderm were similar to those of E6.5 VE 
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(Supplementary Fig. 1c–e); this is in line with the notion that VE 
also contributes to the endoderm lineage19. Taken together, these 
data demonstrate the high quality of the early tissues we isolated 
and lineage-specific transcription landscapes in early development.

Next, to examine the dynamics of DNA methylation during 
early lineage commitment, we developed a low-input method for 
genome-wide DNA-methylation profiling: STEM-seq (small-scale 
TELP-enabled methylome sequencing) (Supplementary Fig.  2a). 
This approach reduces DNA loss because bisulfite conversion is 
performed before TELP-mediated DNA amplification, a highly 
sensitive library-preparation method20. Our data showed that 
STEM-seq could accurately determine DNA methylomes with 
as little as 10 ng of genomic DNA, or 500 cells (Supplementary 
Fig.  2b–e). Next, we profiled high-depth methylomes for early 
lineages (with 2–3 replicates) by STEM-seq (sequencing informa-
tion is provided in Supplementary Table  2). We first focused on 
CG methylation. The methylome data generally showed excel-
lent replicate reproducibility (Supplementary Fig. 3a) and genome 

coverage for CG sites (Supplementary Fig.  3b,c). A global view 
of methylomes revealed large hypomethylated regions around 
the Hoxa gene cluster, as expected21 (Fig.  1b). We also observed 
dynamic DNA methylation near developmentally regulated  
genes including Hnf4a (VE/endoderm marker), Pou5f1 (also known 
as Oct4), and Tdgf1 (epiblast markers), which are reciprocally meth-
ylated in epiblast or VE (Supplementary Fig.  3d). Notably, these 
promoters showed intermediate levels of methylation in endoderm, 
consistent with the mixed origin of endoderm from both epiblast 
and VE19. We then investigated whether the global CG methylome 
of each tissue reflects its spatiotemporal relationship by conducting 
a hierarchical clustering analysis of methylomes for early embryos, 
as well as for somatic tissues21 and mouse embryonic stem cells 
(mESCs)22 (Fig.  1c). We found that E3.5 ICM, E3.5 TE, and E4.0 
ICM, which are all hypomethylated, clustered together away from 
all other lineages (Fig.  1c). The methylomes of endoderm, ecto-
derm, and mesoderm were much closer to each other than to the 
methylomes of the derivative somatic tissues. These data suggest 
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Fig. 1 | The dynamics of lineage-specific DNA methylomes in early embryos. a, An overview of mouse embryonic development from E3.5 to E7.5. The 
lineage relationship among various tissues is shown at the bottom. ICM, inner cell mass; TE, trophectoderm; ZP, zona pellucida; PrE, primitive endoderm; 
VE, visceral endoderm; Epi, epiblast; Ect, ectoderm; End, endoderm; Mes, mesoderm; PS, primitive streak. b, A UCSC Genome Browser snapshot showing 
lineage-specific DNA-methylation landscapes from oocyte/sperm to E7.5 embryo. MethylC-seq data from sperm/oocyte to E3.5 ICM were published 
previously13. c, A dendrogram showing clustering of mouse methylomes (1-kb bin for the entire genome) for early lineages, mESCs (this study or a previous 
study22), epiblast stem cells (EpiSC54), and somatic tissues21. d, The dynamics of lineage-specific CG methylation (mCG) from oocyte/sperm to E7.5 
embryo. e, An analysis similar to that in d but for CH methylation (mCH). The sequence motif for CH methylation in E5.5 epiblast is shown as an inset. 
Analyses were done using pooled data from 2–3 biological replicates.
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that substantial epigenome drift occurs between embryonic pro-
genitor and somatic tissue.

Dynamic lineage-specific methylation at CG and CH sites. The 
segregation of ICM and TE is the first lineage-specification event 
in embryos2. Genome-wide, we identified a total of 208 and 47 
promoters that were hypermethylated in ICM and TE, respectively 
(Supplementary Table  3, Methods). The majority of genes that 
were differentially expressed between ICM and TE did not show 
differences in promoter methylation (Supplementary Fig. 3e). For 
example, both Pou5f1 and Tdgf1 were expressed at high levels in 
ICM but not in TE, yet their promoters remained unmethylated in 
both lineages (Supplementary Fig.  3d). However, both promoters 
are methylated in TE-derived placenta21 (Supplementary Fig. 3d), 
which indicates that DNA methylation is involved in maintaining 
these lineage regulators but not in initially silencing them. We then 
asked how de novo methylation occurs in concert with the speci-
fication of epiblast and VE. From E4.0 to E6.5, DNA methylation 
increased considerably genome-wide in epiblast, but it increased 
to a lesser extent in VE (Fig. 1d, Supplementary Fig. 3f). This was 
accompanied by epiblast-specific sharp upregulation of Dnmt3a, 

Dnmt3b, and Dnmt3l at E5.5, with Dnmt3l likely undergoing auto-
repression through promoter methylation at E6.523 (Supplementary 
Fig. 3g,h). In addition to CG methylation, CH methylation was rela-
tively enriched in oocytes but was barely detected in sperm and after 
the four-cell stage, although it reappeared in E5.5 epiblast (Fig. 1e). 
Unlike CG methylation, which showed further increases, CH meth-
ylation decreased from E6.5 to E7.5 (Fig. 1d, e). This is consistent 
with the reduced expression of Dnmt-family genes (Supplementary 
Fig. 3g) and the fact that CH methylation cannot be maintained by 
DNMT124. CH methylation in early embryos preferentially occurs 
in TACAG sequences (Fig. 1e and data not shown), similar to what 
is observed in embryonic stem cells24. In sum, these data indicate 
that lineage-specific de novo methylation of CG and CH sites corre-
lates with the activities of DNMT proteins. Because CH methylation 
levels were much lower than CG methylation levels (Fig.  1e), we 
focused mainly on CG methylation in subsequent analyses, unless 
otherwise noted.

Allele-specific de novo methylation highlights conserved gene 
body methylation. In preimplantation development, the two paren-
tal genomes undergo differential demethylation7. We asked whether 
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the two parental alleles are also subjected to distinct de novo meth-
ylation in postimplantation embryos. We first validated our allele-
specific analyses with methylome data from gametes13 and imprinted 
loci (Supplementary Fig. 4a,b, Methods). Notably, in E3.5 ICM, the 
maternal genome, but not the paternal genome, was hypermethyl-
ated in gene bodies, showing an oocyte-like methylome pattern25 
(Fig.  2a). The parental methylomes quickly became symmetrical 
by E5.5 as a result of allele-specific acquisition of DNA methylation 
that was anticorrelated with the starting levels of DNA methylation 
in E4.0 ICM (Fig.  2a,b). CG and CH methylation both occurred 
preferentially in active gene bodies in VE and epiblast from E5.5 
to E6.5 (Fig. 2a,c). In E6.5 epiblast, the gene body CG methylation 
pattern became attenuated, and it is likely that this was a result of the 
saturation effect. These data show both allele-specific methylation 
and conserved gene body methylation in postimplantation embryos.

Differential methylation of promoters and DNA methylation val-
leys between epiblast and VE. We then asked whether the distinct 
methylomes in embryonic and extraembryonic tissues might regu-
late lineage-specific transcription programs. Because the parental 
methylomes became similar after E5.5, we conducted the analyses 
without separating the alleles. We identified promoters that were 

hypermethylated in E6.5 epiblast (n =​ 2,936) or VE (n =​ 242) 
(Supplementary Table  3). Of the corresponding genes, only a 
small fraction (6.4% and 20.2%, respectively) showed consistent 
changes in expression (threefold downregulation in hypermethyl-
ated tissues), and we considered these as possible ‘DNA methyla-
tion effectors’ (Supplementary Table 3). Genes that were specifically 
hypermethylated in epiblast included many VE markers, such as 
members of the apolipoprotein family Apoa1, Apoa4, Apoa5, Apob, 
and Apoc2 (Fig. 3a). In contrast, several key epiblast marker genes 
such as Pou5f1, Nanog, and Tdgf1 were hypermethylated in VE 
(Fig. 3a). Aside from these methylation effectors, the rest of the dif-
ferentially methylated genes were largely silenced in both epiblast 
and VE (Supplementary Fig. 5a). Among these genes, those hyper-
methylated in VE were strongly enriched for developmental genes 
(P =​ 5.83 ×​ 10−5) and transcription factors (P =​ 7.41 ×​ 10−7), includ-
ing the Hox genes (Hoxb2, Hoxb3, and Hoxd12), Nkx2-5, Nkx2-6, 
Prdm14, and Hand1. We did not observe this for genes that were 
hypermethylated in epiblast, which were overwhelmingly enriched 
for the olfactory receptor gene family (P << 0.001; fold enrichment, 
4.72) (Supplementary Fig. 5a). Thus, DNA methylation is likely to 
be engaged in reciprocal gene silencing of lineage regulators (or 
future regulators) between epiblast and VE.
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We found it intriguing that the promoters of developmental 
genes were preferentially methylated in VE. Careful examination 
revealed that these hypermethylated regions extended beyond pro-
moters (Fig. 3b). Previously, we and others found that developmen-
tal genes tend to reside in large domains of hypomethylated regions, 
termed DNA methylation valleys (DMVs)26 or DNA methylation 
canyons27. Using a previously described approach26, we identi-
fied 842–900 DMVs in E6.5 epiblast, ectoderm, PS, mesoderm,  
and endoderm (Methods). We were not able to call DMVs in 
other lineages that were globally hypomethylated. Indeed, DMVs 
in early embryos were similarly enriched for developmental genes 
and Polycomb targets (Supplementary Fig.  5b,c). By identify-
ing all hypermethylated regions in E6.5 VE and comparing them 
with those in E6.5 epiblast (Methods), we confirmed that promot-
ers and CpG islands (CGIs) were preferentially methylated in VE 
(Fig. 3c). In epiblast, DMVs with trimethylation of histone H3 at 
Lys27 (H3K27me3) also gained partial DNA methylation at E5.5. 
Unlike those in VE, these DMVs quickly lost DNA methylation at 
E6.5 and remained relatively hypomethylated in somatic tissues 
(Fig. 3b,d, Supplementary Fig. 5d). Similar patterns were observed 
for an epiblast methylome dataset generated via reduced-represen-
tation bisulfite sequencing28 (Fig. 3b,d). The changes of DNA meth-
ylation were most evident for non-CGI regions in DMVs, but they 
were also found in CGIs (Supplementary Fig. 5e). In fact, CGIs in 
DMVs were preferentially methylated in VE compared with other 
CGIs (Supplementary Fig. 5f). Because the DNA methylation oxi-
dase genes Tet1 and Tet2 were expressed at high levels in peri- and/
or postimplantation embryos (Supplementary Fig.  5g), we asked 
whether they are involved in demethylation of DMVs. To explore 
this, we generated Tet1/Tet2 double-knockout (DKO) mice (by 
crossing Tet1-knockout mice and Tet2-knockout mice; Methods) 
and isolated E6.5 epiblast for STEM-seq analysis. Indeed, DMVs 
from Tet1/Tet2 DKO mice showed increased DNA methylation 
compared with that in wild-type mice (Fig. 3b,d), indicating that 
DMVs undergo TET-mediated demethylation in epiblast at E6.5. 
The active demethylation of DMVs raises the possibility that per-
haps the hypomethylation of DMVs is important for maintenance 
of the transcription plasticity of the associated developmental genes.

Lineage-specific methylation is associated with chromatin 
higher-order structure. The differential methylation between VE 
and epiblast was not limited to promoters and DMVs. A chromo-
some-wide view showed that such differences also existed in much 
larger regions (Fig.  4a). For example, whereas epiblast showed 
relatively even methylation across the chromosome, VE showed 
megabase-sized hypomethylated domains (Fig.  4a), a feature that 
resembled partially methylated domains (PMDs) in placenta29. 
Chromatin is known to be spatially organized into two types of large 
compartments, A and B, which show preferential physical interac-
tion within each class but not between classes30. Compartments A 
and B generally match open chromatin domains with high gene 
densities and closed chromatin domains with low gene densities, 
respectively30. We asked whether the PMDs in VE correlate with 
such chromatin compartments. Using sisHi-C, a low-input Hi-C 
method31 (Methods), we investigated higher-order chromatin orga-
nization for E3.5 ICM31, E6.5 epiblast, E6.5 VE, and E7.5 ectoderm 
(Supplementary Table  2). We found that the three-dimensional 
chromatin interaction patterns were globally similar to one another 
in early lineages, as well as to those in mESCs32 (Fig. 4b). This was 
also true for ‘topological domains’ (Fig. 4b) defined by directional-
ity index32 (Supplementary Fig. 6a,b), P(s) curves (which reflect the 
relationship of genomic distances and chromatin interaction fre-
quencies) (Supplementary Fig.  6c), and chromatin compartments 
(Fig. 4a). These data indicate that higher-order chromatin structure 
is established as early as in ICM and is largely conserved from E3.5 
to E7.5. We then sought to identify all PMDs and highly methylated  

domains (HMDs) in E6.5 VE (Methods). Indeed, we found that 
HMDs and PMDs in VE correlated with chromatin compartments 
A and B, respectively (Fig. 4a,c). One interesting question is whether 
the higher-order chromatin structure modulates DNA methylation, 
or vice versa. As chromatin organization is already established in 
ICM (Fig. 4a,b), where the genome is globally hypomethylated, it is 
unlikely that DNA methylation regulates chromatin compartments. 
To test whether the preferential DNA methylation in compartment 
A in VE was simply due to higher transcriptional activities, we 
examined DNA-methylation levels in active gene bodies, inactive 
gene bodies, and intergenic regions in each compartment. In VE, 
active gene bodies were preferentially methylated in compartments 
A and B, which is in line with gene-body-dependent DNA methyla-
tion. However, inactive gene bodies and intergenic regions showed 
considerable levels of DNA methylation only in compartment A, 
and not in compartment B (Supplementary Fig. 7a), which suggests 
that compartment-correlated DNA methylation in VE may be inde-
pendent of transcription.

Notably, all regions in epiblast seemed to acquire similar levels 
of DNA methylation in compartments A and B (Supplementary 
Fig.  7a). It is unclear why compartment-specific methylation was 
absent in epiblast. One possibility is that chromatin in compartment 
A is more accessible for DNMTs, but in epiblast excessive DNMT 
machinery leads to equal methylation in compartment B. Because 
CH methylation occurred at comparatively lower levels that were 
far from saturation, we asked whether CH methylation might be 
correlated with chromatin compartments in both lineages. Indeed, 
unlike CG methylation, CH methylation occurred preferentially in 
compartment A in both epiblast and VE (Supplementary Fig. 7b). As 
a result, CG and CH methylation were highly correlated in both E5.5 
VE (R =​ 0.83) and E6.5 VE (R =​ 0.80), but showed weaker correlation 
in E5.5 epiblast (R =​ 0.37) and virtually no correlation in E6.5 epi-
blast (R =​ –0.02) (Supplementary Fig. 7c). Taken together, our data 
indicate that lineage-specific de novo methylation correlates with 
chromatin compartment and differential expression of Dnmt genes.

Paternal demethylation in preimplantation embryos correlates 
with chromatin compartment. Given that de novo methylation 
is associated with chromatin higher-order structure, we asked 
whether this is also true for genome demethylation in preimplanta-
tion embryos. Surprisingly, we found that compartment A, but not 
compartment B, was preferentially demethylated on the paternal 
genome (Fig. 4d,e). This compartment-specific demethylation also 
explains the differential background methylation levels near active 
and inactive genes on the paternal genome in preimplantation 
embryos (Fig.  2a, Supplementary Fig.  7d). To determine whether 
such demethylation depends on TET3, a methylcytosine oxidase 
that preferentially demethylates the paternal genome33, we analyzed 
a published methylome comparing wild-type and Tet3-knockout 
zygotes34. Although TET3 indeed showed a preference for compart-
ment A (Supplementary Fig. 7e), its effect seemed to be moderate, 
thus indicating the presence of additional regulators for compart-
ment-specific demethylation35. By contrast, the demethylation on 
the maternal allele seemed to be relatively uniform, enabling the 
inheritance of an oocyte methylome pattern to blastocysts (Fig. 4d,e).  
The allele-specific compartment-correlated methylome of ICM 
was clearly different from those of mESCs (Supplementary Fig. 7f). 
Methylomes of both primed and naive (cultured in 2i medium) 
mESCs showed little correlation with chromatin compartment. In 
sum, these data demonstrate that both demethylation and de novo 
methylation are associated with chromatin higher-order structure.

Dynamic methylation identifies putative cis-regulatory elements 
during gastrulation. Although the global methylome is largely 
established by E6.5 (Fig.  1d), we asked whether dynamic DNA 
methylation occurs at individual loci after that point. Previously, it 
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was shown that unmethylated regions (UMRs) and low-methyla-
tion regions (LMRs) preferentially mark cis-regulatory elements 
such as promoters and enhancers, respectively36. We therefore 

sought to identify UMRs and LMRs in early embryos as previ-
ously described37. In total, we identified 17,204–17,898 UMRs and 
24,039–32,019 LMRs in ectoderm, PS, mesoderm, endoderm, and 
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E6.5 epiblast (Supplementary Table 4). We did not carry out similar 
analyses in earlier lineages because of the difficulty of LMR/UMR 
calling in globally hypomethylated genomes. As validation, we found 
that the locations of UMRs were strongly enriched for promoters 
and were largely invariant among different lineages (Supplementary 
Fig. 8a). In contrast, LMRs were much more dynamic, indicating 

putative enhancers36. Furthermore, large fractions of UMRs and 
LMRs in E6.5 epiblast (94% and 58%, respectively) overlapped with 
DNase hypersensitivity sites in mESCs38 (Supplementary Fig. 8b). 
The epiblast tissue-specific LMRs (tsLMRs) showed hypermeth-
ylation in Tet1/Tet2 DKO mutant E6.5 epiblast (Fig.  5a), indicat-
ing the involvement of TET proteins in the demethylation of these 
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putative enhancers. Using GREAT analysis39, we found that tsLMRs 
(Supplementary Table  4) were preferentially located near genes 
involved in corresponding lineage specification (Fig. 5a). We then 
determined which regulators may function at LMRs by search-
ing for their DNA motifs in these regions (Fig. 5b). For instance, 
the motif of POU5F1 was enriched in epiblast, ectoderm, and, to 
a lesser extent, PS LMRs, whereas SOX2 was enriched mainly in 
ectoderm LMRs. This is consistent with their expression patterns as 
determined in this study (Supplementary Fig. 1d) and in previous 
work40–42 (it is worth noting that Pou2f1 and Pou3f1 are also weakly 
expressed at these stages (data not shown)). In fact, conditional 
depletion of Pou5f1 in postimplantation embryos leads to deficient 
cell proliferation in PS41. FOXA1, FOXA2, and GATA4 (the motifs 
of GATA family members were highly similar; data not shown) were 
enriched in endoderm tsLMRs, consistent with their pivotal roles in 
endoderm differentiation43–45. Taken together, these results demon-
strate that the dynamic DNA methylation at LMRs correlates with 
lineage identities during gastrulation.

Next, we asked whether these LMRs in early lineages are 
retained in somatic tissues. Using published datasets21,46, we found 
that tsLMRs from early embryos showed significant overlap with 
putative enhancers in E14.5 and somatic tissues (Supplementary 
Fig. 8c). However, the enrichment decreased as development pro-
ceeded, suggesting gradual drift of the epigenome. UMRs and LMRs 
enriched in early embryos but not in somatic tissues (Supplementary 
Table 5) included those at the promoters of pluripotency genes such 
as Pou5f1, Nanog, and Tdgf1 (Supplementary Fig. 8d). Distal UMRs 
and LMRs specific for early embryos were preferentially located 
near many developmental regulator genes such as Lin28a, Sall4, and 
Dnmt3b (Supplementary Fig. 8d,e). Taken together, these data dem-
onstrate that dynamic DNA methylation occurs at lineage-specific 
putative enhancers during gastrulation.

Global lineage methylome patterning does not strictly require 
implantation. Because de novo methylation is accompanied by the 
implantation of embryos, we asked whether implantation is required 
for establishment of the DNA methylome. Notably, mouse embryos 
can grow through the early stages of organogenesis in vitro47. Thus, 
we isolated E4.0 embryos in vivo; cultured them in vitro using 
established protocols47,48; and collected the embryos at days 1, 2 and 
4 for STEM-seq and RNA-seq analyses. The in vitro–cultured (IVC) 
embryos developed more slowly than their in vivo counterparts, 
retaining a blastocyst-like shape after 2 d of culture (data not shown) 
and then adopting a postimplantation-embryo-like morphology by 
day 4 (Supplementary Fig.  9a). Despite the delayed development, 
de novo methylation occurred in embryos after 1 d of IVC culture 
(IVC +​ 1d) and in IVC +​ 2d embryos (Fig. 5c). For day 4 embryos, 
we segregated and collected epiblast-like and VE-like tissues (on 
the basis of morphology) (Methods). Lineage-marker analysis and 
global transcriptome clustering analysis showed that IVC +​ 4d epi-
blast and VE resembled E5.5 epiblast and VE in vivo (Supplementary 
Fig. 9b,c). In IVC +​ 4d VE, DNA methylation continued to increase 
at a relatively steady rate. However, the acquisition of DNA methyla-
tion in IVC +​ 4d epiblast was much faster (Fig. 5c) and was closely 
accompanied by sharp upregulation of Dnmt3b (Supplementary 
Fig. 9d). These data indicate the presence of a default and progres-
sive methylation-patterning process that is accelerated by dramatic 
upregulation of Dnmt genes (especially Dnmt3b) preferentially in 
epiblast. We noted that the methylation patterns of IVC +​ 4d epi-
blast and IVC +​ 4d VE largely recapitulated those of their in vivo 
counterparts, both in a chromosome-wide analysis (Supplementary 
Fig. 10a) and in gene bodies (Supplementary Fig. 10b). We observed 
compartment-dependent methylation patterns in early-stage IVC 
embryos as well (especially IVC +​ 2d embryos) (Supplementary 
Fig. 10a). Notably, compared with their counterparts in vivo (both 
E5.5 and E6.5), IVC +​ 4d epiblast and VE showed higher global 

methylation overall (Fig. 5c). In addition, a detailed analysis showed 
that aberrant hypermethylation in IVC +​ 4d epiblast was located 
preferentially in DMVs and CGIs (Supplementary Fig. 10c), which 
raises the possibility that these regions are highly sensitive to envi-
ronmental changes. Taken together, these data indicate that a similar 
mechanism may govern de novo methylation and lineage-specific  
methylation patterning both in vivo and in vitro, and that this 
mechanism does not strictly require implantation.

Discussion
Lineage segregation during pre- and postimplantation development 
gives rise to the earliest fate-committed cell types and the founder 
tissues for complete body development. These events also provide 
models for studying cell fate determination from naive pluripo-
tency to primed states for differentiation49. However, the transcrip-
tion circuitry and epigenetic regulation in these processes in vivo 
remain poorly understood. Here, by using several complementary 
approaches with carefully dissected early lineages, we obtained a 
comprehensive view of transcriptome, methylome, and 3D chro-
matin organization during early lineage specification. Our work 
identified extensive stage-specific and lineage-specific patterning of 
DNA methylomes during the initial cell fate commitment. Lineage-
specific methylomes were particularly evident for embryonic and 
extraembryonic tissues. It is tempting to speculate that such dif-
ferential methylomes may provide an epigenetic barrier not only 
between embryonic and extraembryonic tissues in the fetus, but also 
between extraembryonic fetal tissues and maternal tissues. It is likely 
that methylome patterning is regulated by multiple factors. First, we 
found that transcription-dependent gene body methylation exists in 
both embryonic and extraembryonic lineages, which suggests that 
it is an evolutionarily conserved mechanism50. However, gene body 
methylation is relatively transient in embryonic tissues, as regions 
beyond active gene bodies also become methylated eventually, 
probably as a result of highly active DNMTs. Second, amid global 
de novo methylation, DMVs were unexpectedly demethylated in 
epiblast but not in VE, via a process that involves the TET proteins. 
As DMVs are preferentially located near promoters of developmen-
tal genes and transcription factors26, the hypomethylation of DMVs 
may be essential to maintain the plasticity of developmental regula-
tors for rapid response to signals. Finally, both demethylation and 
de novo methylation in early development were strongly correlated 
with higher-order chromatin structure. We speculate that chroma-
tin higher structure may regulate the accessibility of DNMTs and 
regulators of demethylation, especially when their availability is 
limited. Importantly, compartment-wide PMDs are also a hallmark 
for cancer and immortalized cell lines51,52. It would be interesting 
to investigate whether the presence of PMDs in these cells is also 
attributable to downregulation of DNMTs. These data show that 
de novo methylation seems to be a pervasive process regulated by 
inherited methylation from previous stages, lineage-specific expres-
sion of DNA methylation machinery, gene activity, and 3D chroma-
tin organization (Supplementary Fig. 10d). Finally, a recent study 
reported that it is likely that the differential methylation patterning 
between embryonic and extraembryonic tissues is driven by WNT 
and FGF signaling53. Taken together, our results provide an unprec-
edented view of transcription circuitry and epigenetic landscapes in 
early lineage specification. Investigation of this molecular architec-
ture and its highly dynamic reprogramming should help researchers 
decipher the regulatory foundation for initial cell fate commitment 
and body plan in mammalian development.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41588-017-0003-x.
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Methods
Embryo collection. For collection of E3.5 and E4.0 tissues, 6-week-old C57BL/6N 
female mice were injected with pregnant mare serum gonadotropin followed by 
human chorionic gonadotropin before being mated with DBA/2N male mice. The 
first day that a vaginal plug was observed was considered as E0.5.

Fertilized embryos were flushed out from the uterus with HEPES-buffered CZB 
medium at defined times. Immunosurgery was performed as reported previously56 
to remove TE and isolate ICM. Briefly, after pronase treatment to remove the zona 
pellucida, blastocysts were incubated with DMEM containing rabbit anti-mouse 
serum (1:10) for 30 min and then washed three times in DMEM plus 10% FBS. 
The resulting embryos were exposed to guinea pig complement (1:5 in DMEM) 
for 10 min, washed three times, and then pipetted under microscopy to carefully 
remove TE cells. We separated TE from blastocysts by manual bisection to collect 
the opposite part of ICM as described previously57. The derivatives of TE at later 
stages were not investigated because of the difficulty of cleanly separating them 
from maternal tissues after embryo implantation.

E5.5–E7.5 tissues were collected via previously described methods17,58. Briefly, 
female mice were mated naturally, and the first day that the vaginal plug was 
observed was considered as E0.5. After embryos were dissected from uterus and 
decidua, they were transferred into a dish containing DMEM plus 10% FBS to 
remove the Reichert’s membrane using syringe needles. Embryonic regions were 
separated from extraembryonic tissues and transferred into pancreatic and trypsin 
enzyme solution at room temperature for 2–10 min. For E5.5 and E6.5 embryos, 
we obtained VE by gently sucking the embryonic part into a capillary pipet two or 
three times, which detached the VE from the embryo and isolated the rest of the 
embryonic region as epiblast. To dissect the three germ layers from E7.5 embryo, 
first we collected the endoderm similarly as for the VE. Next, glass needles were 
inserted parallel to the PS to cut off both mesoderm wings. Finally, the J-shaped 
PS was cut off from the lateral side of the ectoderm where the mesoderm attached, 
and the rest was collected as ectoderm.

Tet1+/− mice (B6;129S4-Tet1tm1.1Jae/J) and Tet2−/− mice (B6;129S-Tet2tm1.1Iaai/J) 
were purchased from The Jackson Laboratory. After mating Tet1+/−;Tet2−/− 
heterozygotes, we collected E6.5 epiblast from embryonic regions from Tet1/Tet2 
DKO embryos as described above. Extraembryonic regions were used for 
genotyping.

In vitro culture of mouse embryos was carried out as previously described48,59. 
Briefly, 6-week-old C57BL/6N female mice were injected with hormone and 
mated with DBA/2N male mice. E4.0 embryos were flushed out of the uterus with 
HEPES-buffered CZB medium and cultured for 4 d in a 35-mm Falcon plastic dish 
that contained 2 ml of CMRL 1066 supplemented with 1 mM glutamine, 1 mM 
sodium pyruvate, and 20% FBS. As described previously, the embryonic region 
was cut off with a needle and subjected to trypsin and pancreatic enzyme digestion 
followed by mechanical dissection to separate epiblast from VE.

STEM-seq library preparation and sequencing. The detailed STEM-seq 
procedure is described as below.

(1) Early lineage samples were lysed with 10 µ​l of lysis buffer (10 mM Tris-HCl, 
pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1 mM EDTA, pH 8.0, NP-40 0.5%) and 1 µ​l  
of protease K (Roche; 10910000) for at least 3 h at 55 °C. The reaction was then 
heat-inactivated for 1 h at 72 °C. After lysis, spike-in λ​-DNA (Promega; D150A) 
was added at a mass ratio of 1/200. The reaction (20 µ​l) was then treated with 1 µ​l 
of dsDNA Fragmentase (NEB; M0348AA) for 30 min.

(2) The digested DNA was directly treated with bisulfite conversion reagent in 
a 140-µ​l reaction with the EpiTect Fast Bisulfite Conversion Kit (Qiagen; 59824) 
according to a modified protocol: denature for 8 min at 95 °C, incubate at 60 °C for 
25 min, and repeat the procedure.

(3) The converted DNA was subjected to column purification and 
desulfonation on MinElute DNA spin columns (Qiagen; 59824) with carrier RNA 
(Qiagen; 59824) according to the manufacturer’s instructions. The purified DNA 
was eluted in 30 µ​l of elution buffer.

(4) The converted DNA was then subjected to TELP library preparation as 
previously described20. Specifically, 28 µ​l of purified converted DNA was mixed 
with 1 µ​l of 1 mM dCTP and 1 µ​l of ExTaq buffer, incubated at 95 °C for 1 min, and 
then quickly cooled on ice. 1 µ​l of terminal transferase (NEB; M0315L) was then 
added to the mix, and the reaction was incubated at 37 °C for 30 min, after which 
1 µ​l of 1 mM dATP was added and the mixture was incubated at 37 °C for 5 min 
before being inactivated at 80 °C for 20 min. This was followed by DNA extension 
with a poly-G-containing primer. Specifically, the previous reaction (~30 µ​l) was 
added to a 30-µ​l reaction mixture (6.2 µ​l of ddH20, 12 µ​l of 5 ×​ KAPA buffer A, 5 µ​l  
of 2.5 mM dNTP, 6 µ​l of 2 µ​M poly G primer, and 0.8 µ​l of KAPA 2 G polymerase 
(KE5507)). This was followed by a PCR reaction: 95 °C for 3 min, (47 °C for 1 min, 
68 °C for 2 min) ×​ 16 cycles, 72 °C for 10 min, and a pause at 4 °C until the next 
step. The mixture was digested with 2 µ​l of Exonuclease I (NEB; M0293L) and 6 µ​l 
of Exonuclease I buffer at 37 °C for 50 min and was inactivated at 80 °C for 10 min. 
A one-third volume (23 µ​l) of 4 ×​ B&W buffer (40 mM Tris-HCl, pH 8.0, 2 mM 
EDTA, 4 M NaCl) was then added to the 69 µ​l of digested mixture. Each reaction 
system was supplemented with 10 µ​l of prewashed streptavidin beads (prewashed 
with 1 ×​ B&W buffer three times and resuspended with 10 µ​l of 1 ×​ B&W buffer). 
The mixture with beads was mixed in a Thermomixer (Eppendorf) at 1,400 r.p.m. 

(5 s on, 10 s off) at 23 °C for 30 min, and beads were washed once with 120 µ​l of 
1 ×​ B&W buffer and three times with 120 µ​l of EBT buffer (10 mM Tris-HCl, 
pH 8.0, 0.02% Triton X-100). The washed beads were resuspended with 20 µ​l of 
ligation reaction, including 8.4 µ​l of EB buffer (10 mM Tris-HCl, pH 8.0), 0.6 µ​l  
of 10 µ​M TA adaptor, 10 µ​l of 2 ×​ Quick ligase buffer, and 1 µ​l of Quick ligase 
(NEB; M2200L). The ligation mixture was rotated at 4 °C overnight, then moved 
to room temperature for 10 min and washed with 120 µ​l of EBT buffer three times. 
DNA was eluted in 35.5 µ​l of H2O in a Thermomixer at 66 °C (1,400 r.p.m., 5 s on, 
10 s off for 30 min). The eluted 35.5 µ​l of DNA was added to the 14.5-µ​l reaction 
mixture (5 µ​l of 2.5 mM dNTP, 5 µ​l of 10 ×​ ExTaq buffer, 0.5 µ​l of ExTaq (RR006), 
2 µ​l of 20 µ​M P1_FL and 2 µ​l of 20 µ​M index primer). This was followed by a PCR 
reaction: 95 °C for 3 min, (95 °C for 30 s, 58 °C for 30 s, 72 °C for 30 s) ×​ 12 cycles, 
72 °C for 10 min, and a pause at 4 °C until the next step. The resulting libraries 
were size-selected with AMPure XP according to the manufacturer’s standard 
protocol and subjected to deep sequencing.

RNA-seq library preparation and sequencing. Total RNAs from various lineages 
isolated from E5.5–E7.5 embryos were extracted with the RNeasy Plus micro kit 
(Qiagen; 74034) according to the manufacturer’s protocol. For ICM and TE, cells 
were directly lysed in hypotonic lysis buffer without RNA extraction (Amresco; 
M334). The cDNA libraries were then generated via the Smart-seq2 method60. 
After reverse transcription reaction with oligo-dT primers and preamplification, 
cDNAs were sheared by Covaris and subjected to Illumina TruSeq library 
preparation. All libraries were sequenced on an Illumina HiSeq 1500 according to 
the manufacturer’s instructions.

Generation of sisHi-C library and sequencing. sisHi-C libraries were produced 
as described31. Briefly, samples were cross-linked with 1% formaldehyde at room 
temperature for 10 min. Formaldehyde was quenched with glycine for 10 min at 
room temperature. After being washed with 1 ×​ PBS, the embryos were lysed on 
ice and the chromatin was solubilized with 0.5% SDS. The nuclei were digested 
with MboI at 37 °C overnight. After fill-in with biotin-14-dCTP, the fragments 
were ligated in a small volume. Reversal of cross-linking, DNA purification, 
and sonication were done sequentially. The biotin-labeled DNA was then pulled 
down with Dynabeads MyOne Streptavidin C1 (Life Technology). The fragments 
that included a ligation junction were subjected to Illumina library preparation. 
Fourteen cycles of PCR amplification were performed with Extaq (Takara),  
and the products were purified and size-selected with AMPure XP beads. 
All libraries were sequenced on an Illumina HiSeq 1500 according to the 
manufacturer’s instructions.

STEM-seq data processing. All STEM-seq datasets were mapped to the mm9 
reference genome by BSSeeker261. Because STEM-seq libraries contain poly C 
in the ends of reads, we used scripts to remove poly G from the beginning of 
read 2 for paired-end mapping. Alignments were performed with the following 
parameters in addition to the default parameters: --bt2-p 8 --XS 0.2,3 --a CCCCCC 
--m 4. Multi-mapped reads and PCR duplicates were removed. We also removed 
the reads marked by BSSeeker2 as unconverted (--XS 0.2, 3) and reads with 
mapped region lengths shorter than 30 bp. After validating the reproducibility 
between replicates, we pooled data from replicates for subsequent analyses.

Quantification of CG and CH methylation. For each CG site, the methylation 
level was calculated as the total methylated counts (combining Watson and Crick 
strands) divided by the total counts across all reads covering that CG. Because 
the CH site is usually asymmetrical, CH methylation was calculated separately 
for each strand. The bisulfite conversion error rate was subtracted from the CG 
or CH methylation level. If the methylation value was less than the error rate, the 
methylation value for that site was set as 0.

Allele assignment of sequencing reads. To generate strain-specific genomes by 
considering SNP information, we downloaded SNP tables for the DBA/2J and 
C57BL/6N strains from the Sanger Institute Mouse Genome Project. We generated 
DBA/2J and C57BL/6N genomes by substituting corresponding bases from the 
mm9 genome. Please note that because we used the DBA/2N strain instead of the 
DBA/2J strain, we verified the identity of the strain by sequencing its genome. The 
genomes of DBA/2N and DBA/2J are very similar, and 99.4% of SNPs identified in 
the DBA/2N strain (compared with the reference genome) were the same as those 
found in the DBA/2J strain identified by the Sanger Institute.

To minimize the mapping bias introduced by the two parental alleles, we 
aligned all STEM-seq reads to the genomes of the C57BL and DBA strains 
separately with BSseeker2.8, using the following parameters: --bt2-p 8 --XS 0.2,3 
--a CCCCCC --m 4. SNP information from both reads in the pair was summed 
and used. If the SNP contained a cytosine, its bisulfite-converted form (T) was also 
considered. SNPs that became non-informative (i.e., could not be distinguished 
from the opposite allele) after bisulfite conversion were discarded. When multiple 
SNPs were present in a read (or a read pair), the parental origin was determined 
by votes from all SNPs, and the read was assigned to the allele that received at least 
two-thirds of the total votes.
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RNA-seq data processing. RNA-seq reads were mapped to the mm9 reference 
genome by TopHat (version 2.0.11)62. Cufflinks (version 2.0.2)62 was used to 
calculate the gene expression levels, with the refFlat database from the UCSC 
Genome Browser used as reference.

Hi-C data processing. Sequencing reads were mapped, processed, and iteratively 
corrected with HiC-Pro as described previously63,64. Briefly, the read pairs were 
mapped to the mm9 reference genome in a two-step approach with bowtie265. 
Then the invalid read pairs including dangling ends, self-circle ligation, and 
duplicates were discarded. The genome was divided into bins of specific lengths 
to generate the contact maps. We used 100-kb and 40-kb bins to investigate global 
chromatin contacts and local domain contacts, respectively. Hi-C interaction heat 
maps were generated with the normalized interaction maps with HiCPlotter66. 
We carried out A/B compartment segmentation with a 100-kb interaction matrix 
using a previously described method30. After validating the reproducibility between 
replicates for each cell type, we pooled data from replicates for subsequent analyses.

Validation of STEM-seq and RNA-seq datasets. To compare MethylC-seq and 
STEM-seq or to make comparisons between STEM-seq replicates, we calculated 
the average methylation values for 2-kb bins across the entire genome. Bins 
that had values in both samples were selected, and the Pearson correlation was 
calculated between samples or replicates. For RNA-seq samples, the Spearman 
correlation coefficients were calculated for FPKM values across all genes in the 
genome between replicates.

Hierarchical clustering of DNA methylomes. The average methylation value 
was calculated in a 1-kb window for the entire genome for each tissue/cell type. 
Hierarchical clustering was done with Cluster 3.067 with the parameter --e 2 
(Pearson correlation). Java Treeview was used to visualize the clustering result.  
The methylomes of somatic tissues were obtained from a previous study21.

Identification of differentially methylated CG sites. CG sites covered by at least 
five reads were selected13. Two-tailed Fisher’s exact test was performed to evaluate 
the significance of differentially methylated CG sites between two stages. Only CG 
sites with P <​ 0.05 and changes in CG methylation levels between two stages greater 
than 0.2 were identified and used for downstream analyses.

CH methylation motif analysis. The CH sites covered by at least ten reads were sorted 
by their methylation levels. The top 5,000 sites were selected, and sequences within 
±​ 5 bp around the CH sites were subjected to a motif analysis with Weblogo3.068.

Identification of differentially methylated promoters between E3.5 ICM and 
TE, and between E6.5 Epi and VE. First we calculated the methylation levels 
between two samples for each gene promoter (transcription start site within 
500 bp). Those genes with promoter methylation levels greater than 0.35 in one 
sample and twofold greater than those in the other sample were identified as 
differentially methylated promoters.

Analysis of differentially methylated regions between VE and epiblast. We first 
identified differentially methylated CG sites between VE and epiblasts as described 
above. Then we identified differentially methylated bins (2-kb) containing at least 
three differentially methylated CG sites. These bins were further merged into 
differentially methylated regions if they were no more than 2 kb away. To determine 
the genomic distribution of hypermethylated regions, we segmented the genome 
into transcription start sites, exons, introns, transcription end sites, and intergenic 
regions using annotations combining the RefSeq, UCSC Known Gene, Ensemble, 
and GENCODE databases. To assess the significance of hypermethylated regions 
falling into a certain category, we generated a set of random regions with lengths 
equal to those of each individual hypermethylated region. The numbers of regions 
that fell into each category were calculated, and the significance was computed as 
the log ratio of observed numbers divided by those for random regions.

Analysis of DMVs. The DMVs were identified as previously described26. DAVID69 
was used for Gene Ontology analysis for DMV genes.

Identification of gene-dense regions and gene deserts. The genome was split into 
1-Mb bins, and genes located in each bin were counted. Gene-dense or gene-desert 
regions were identified as those with more than ten genes or no more than one 
gene in each bin, respectively.

Identification of PMDs and HMDs for VE. The PMDs and HMDs in VE were 
identified as previously described52. We calculated the average methylation level  
for each 10-kb bin, and included only bins with at least 20 CpGs. Because of  
the different global methylation levels for different cell types, we used different 
cutoffs for PMD and HMD identification. Specifically, hypomethylated bins  
(mCG/CG ≤​ 0.3 for E5.5 VE and mCG/CG ≤​ 0.4 for E6.5 VE) and 
hypermethylated bins (mCG/CG ≥​ 0.6 for E5.5 VE and mCG/CG ≥​ 0.7 for E6.5 
VE) were identified and merged into PMDs and HMDs, respectively. We also 
excluded the promoter regions (±​ 2.5 kb) for PMDs.

Identification of allelically expressed genes. To minimize the mapping bias 
introduced by the sequence differences between the two parental alleles, we aligned 
all sequencing reads to the genomes of the C57BL/6N and DBA/2J strains (mm9) 
separately. We examined all SNPs with high-quality base-calling (Phred score ≥​ 30) 
and assigned each read to its parental origins. Only SNP information from both 
paired reads was retained. If multiple SNPs were present in a read, we determined 
the parental origin that received at least two-thirds of the total votes from all SNPs. 
The assigned reads mapped to exons were quantified by Htseq-count70. Allele-
specific genes were identified on the basis of at least threefold change between the 
numbers of reads assigned to maternal or paternal alleles with P <​ 10−3.

Identification of topologically associated domains. We used a directionality 
index and a hidden Markov model (HMM) to identify topologically associating 
domains (TADs) as previously described32. We used a 40-kb bin resolution and 
2-Mb window size to calculate the directionality index score. We defined TAD 
boundaries as the middle bin (40 kb) between two consecutive TADs identified by 
HMM with distances of no more than 400 kb.

Identification of compartments A and B. Compartments A and B were 
identified as described previously30, with several modifications. For each stage, 
we used normalized 100-kb interaction matrices in this analysis. Bins that had 
no interactions with any other bins were removed, and the expected interaction 
matrices were generated via a previously described window sliding approach71  
(bin size, 400 kb; step size, 100 kb). The resulting correlation matrices were 
subjected to principal component analysis. Principal component 1 of the 
correlation matrix and the gene density of genome mm9 were used to generate 
compartments A and B.

P(s) curve analysis. The P(s) curve was calculated as previously described72, 
using 100-kb-resolution normalized interaction matrices. First, we used 1.15 as 
an increasing factor to generate logarithmically spaced bins (100 kb, 100 kb ×​ 1.15, 
100 kb ×​ 1.152, and so on). Next, for each bin we counted all the numbers of 
interactions in the corresponding distances. To calculate the probability (P(s)), we 
divided the total numbers of interactions generated in the last step for each bin by 
the total number of possible region pairs. Finally, the P(s) values were normalized 
to enable the sum over the range of the distances to be 1.

Analyses of LMRs, UMRs and tissue-specific LMRs. The methylomes of E6.5 
epiblast and E7.5 germ layer samples were segmented with an HMM as previously 
described36,37. UMRs, LMRs, and fully methylated regions were identified 
accordingly. LMRs that were unique to a lineage were identified as tsLMRs. The 
functional enrichment for genes near tsLMRs was analyzed with the GREAT tool39. 
HOMER55 was used to identify potential transcription factor motifs in LMRs.

Identification of early embryo enriched UMRs/LMRs and their predicted target 
genes. We first combined all UMRs and LMRs identified in the five early lineages 
(E6.5 epiblast, E7.5 ectoderm, E7.5 PS, E7.5 mesoderm, and E7.5 endoderm). We 
then selected those regions with lower methylation levels in early lineages (average 
mCG/CG ≤​ 0.4) and higher methylation levels (mCG/CG ≥​ 0.5) in at least two-
thirds of total somatic tissues (≥​8). Regions overlapping annotated promoters 
(RefSeq) (within 2.5 kb) were identified as promoter UMRs/LMRs, and the rest 
were classified as distal UMRs/LMRs. To identify the possible gene targets of 
distal UMRs/LMRs, we examined all genes within 200 kb of each UMR/LMR and 
calculated the Spearman correlation between methylation values and expression 
levels for each UMR/LMR–gene pair across all early lineages and somatic tissues. 
UMR/LMR–gene pairs that showed strong negative correlation (R <​ –0.4) were 
selected for downstream analysis as previously described73.

Life Sciences Reporting Summary. Further information on experimental design is 
available in the Life Sciences Reporting Summary.

Data availability. All sequencing data, including the STEM-seq, MethylC-seq, 
RNA-seq, and sisHi-C datasets, are available through the Gene Expression 
Omnibus (GEO) under accession GSE76505.
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    Experimental design
1.   Sample size

Describe how sample size was determined. NA

2.   Data exclusions

Describe any data exclusions. NA

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

The findings were reproduced in two biological replicates. 

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.
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5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

NA

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.
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Describe the software used to analyze the data in this 
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See Supplementary Information, "Data Analyses" subsection
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available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
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8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.
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Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).
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10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. NA

b.  Describe the method of cell line authentication used. NA

c.  Report whether the cell lines were tested for 
mycoplasma contamination.
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d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.
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11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

See Supplementary Information, "Embryo collection" subsection

Policy information about studies involving human research participants
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